
IBM Z OMEGAMON Data Provider
Version 1.1

Installation and User's Guide

IBM

Note:

Before using this information and the product it supports, read “Product legal notices” on page 125.

2022-09-29 edition

This edition applies to IBM Z® OMEGAMON® Data Provider Version 1.1 with the PTF for APAR OA63539, and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2021, 2022.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.
© Rocket Software 2021, 2022.

Figures

1. OMEGAMON Data Provider makes attributes available outside of OMEGAMON.. 5

2. Components involved in OMEGAMON Data Provider... 6

3. Example OMEGAMON Data Provider topology... 8

4. Example topology with separate instances of OMEGAMON Data Connect for production and
development...9

5. Choice of destinations for attributes.. 10

6. OMEGAMON Data Provider communication protocols with or without TLS..11

7. OMEGAMON Data Provider configurable parts.. 18

8. Architecture of the getting started exercise: sending JSON Lines over TCP... 19

9. Excerpt of example OMEGAMON Data Provider collection configuration member, KAYOPEN.................20

10. JCL procedure that starts the Zowe cross-memory server, PROCLIB(ZWESIS01)................................ 22

11. Instana ingests attributes from OMEGAMON Data Provider as JSON Lines over TCP............................25

12. Configuring which attributes OMEGAMON Data Provider sends, and to where......................................27

13. Elasticsearch index template that maps string fields to the keyword data type.................................... 30

14. Logstash pipeline configuration to ingest JSON Lines over TCP from OMEGAMON Data Connect........ 31

15. OMEGAMON Data Provider configuration points: Collection, Broker, Connect.......................................39

16. OMEGAMON Data Provider collection configuration parameters control where attributes are sent.....40

17. OMEGAMON Data Broker configuration points: store, forwarder, and output (sink).............................. 46

18. OMEGAMON Data Broker configuration: one store, one or more forwarders... 46

19. OMEGAMON Data Connect configuration points: input from OMEGAMON Data Broker and various
outputs... 55

20. OMEGAMON Data Connect configuration: TCP input...57

21. OMEGAMON Data Connect configuration: TCP output.. 61

22. OMEGAMON Data Connect configuration: Kafka output... 67

 iii

23. OMEGAMON Data Connect configuration: Prometheus output from an HTTP(S) perspective.............. 70

24. OMEGAMON Data Provider is a Prometheus target... 70

25. Example Prometheus text-format output.. 73

iv

Tables

1. Connections between OMEGAMON Data Provider components, with links to security parameter
descriptions..11

2. Historical data collections for Instana: z/OS..26

3. Historical data collections for Instana: CICS..26

4. Historical data collections for Instana: Db2...26

5. OMEGAMON Data Provider configuration points, configuration members, and sample members..........39

6. Monitoring agents supported by OMEGAMON Data Provider, with links to attributes documentation..117

 v

vi

Contents

Figures... iii

Tables... v

About this document...ix

What's new... 1

Introduction..5
Architecture..6
Topology... 7
Attribute destinations.. 10
Security.. 11
Starter dashboards.. 12
Prerequisites.. 12

Installing...15

Overview of configurable parts.. 17

Getting started.. 19
Configuring which collections to send...19
Configuring OMEGAMON Data Broker...21
Configuring OMEGAMON Data Connect.. 23
Integrating analytics platforms... 25

Instana..25
Elastic Stack... 29
Splunk... 31

Starting OMEGAMON Data Provider.. 33

Modifying running components.. 35
Reloading collection configuration..35
Displaying OMEGAMON Data Broker status..35
Restarting OMEGAMON Data Connect.. 36
Stopping components on z/OS.. 36

Adding more collections...37

Configuration parameters.. 39
Collection... 40
OMEGAMON Data Broker...45
OMEGAMON Data Connect..55

TCP input.. 57
TCP output.. 61
Kafka output... 67
Prometheus output.. 69
STDOUT output...73
Filters for JSON-format outputs.. 74

 vii

Event publisher...83
Server..83
Logging..86

Troubleshooting...89
Gathering diagnostic information..89
Common issues..90

OMEGAMON Data Connect fails with charset.MalformedInputException............................. 90
No KPQH037I or KPQH038I message for a table...91

Messages.. 93
Expected messages... 94
KAYL, KPQD, KPQH: Messages from OMEGAMON collection tasks...98
KAYB: Messages from OMEGAMON Data Broker..101
KAYC: Messages from OMEGAMON Data Connect... 107

Reference..117
Supported monitoring agents..117
Attribute dictionary..118

Attribute names versus field names..119
Attribute groups versus table names.. 121

Fields introduced by OMEGAMON Data Connect... 122
JSON output characteristics..123

Product legal notices... 125

viii

About this document

This document describes how to install, configure, and use OMEGAMON Data Provider.

© Copyright IBM Corp. 2021, 2022 ix

x IBM Z OMEGAMON Data Provider: Installation and User's Guide

What's new in OMEGAMON Data Provider
A summarized history of significant updates.

September 2022: APAR OA63539
Attributes support refreshed to include new attributes introduced by monitoring agents.

Documentation updates:

“Attribute destinations” on page 10
A new topic about choosing the destinations of collected attributes.

“Expected messages” on page 94
A new topic that lists the normal messages that you should expect from each component involved in
OMEGAMON Data Provider.

“OMEGAMON Data Provider collection configuration parameters” on page 40

• More details about the special interval value 0
• Clarification of default destinations for unselected collections
• Precedence of entries in the collections sequence
• More examples

“Adding more collections to OMEGAMON Data Provider” on page 37
A new topic about adding more collections to an environment that already sends some collections to
OMEGAMON Data Provider.

OMEGAMON Data Broker
Forwarding to multiple instances of OMEGAMON Data Connect

Each instance of OMEGAMON Data Broker can forward attributes to multiple instances of
OMEGAMON Data Connect.

For an overview of this concept, see “OMEGAMON Data Provider topology” on page 7.

For configuration details, see “OMEGAMON Data Broker configuration parameters” on page 45.

Logging level
Typically, you only need to set the OMEGAMON Data Broker logging options parameter (LOGOPTS)
if IBM® Software Support requests you to do so for troubleshooting.

OMEGAMON Data Connect
Handling of errors in filter condition expressions

Clarification of how OMEGAMON Data Connect handles different types of errors in filter condition
expressions.

Parameters for managing attempts to connect to a TCP sink
Descriptions of two previously undocumented TCP output parameters: max-connection-
attempts and retry-interval.

Methods for setting the logging level
Different ways to set the OMEGAMON Data Connect logging level.

June 2022: APAR OA63141
Support for more monitoring agents

• MQ

– IBM OMEGAMON for Messaging on z/OS, V7.5
• Networks

© Copyright IBM Corp. 2021, 2022 1

– IBM Z OMEGAMON Network Monitor, V5.6
• Storage

– IBM OMEGAMON for Storage on z/OS, V5.5

Support for Instana
IBM Observability by Instana Application Performance Monitoring on z/OS can now ingest attributes
from OMEGAMON Data Provider as JSON Lines over TCP.

To support this new Instana feature, OMEGAMON Data Connect now includes an embedded filter
include file tailored for Instana.

OMEGAMON Data Connect
New configuration parameters:
Filter include files

Filters for JSON-format outputs (Kafka, STDOUT, and TCP) can use the new include parameter
to refer to an external filter include file, rather than specifying filter parameters inline in the
OMEGAMON Data Connect configuration file.

The filter include file can be in the file system or embedded in the OMEGAMON Data Connect JAR
file.

Conditional filters
Filters for JSON-format outputs can now include a condition for each table.

A condition specifies an expression written in the Spring Expression Language (SpEL). The
expression can refer to fields in the table, enabling you to conditionally filter records based on
their field values. OMEGAMON Data Connect forwards a record only if the expression is true.

For example, the following parameters configure OMEGAMON Data Connect to send records from
the z/OS monitoring agent (product code km5) table ascpuutil to the stdout file only if the
value of the job_name field matches the regular expression PFX.*:

connect:
 output:
 stdout:
 enabled: true
 filter:
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: job_name?.matches('PFX.*')

Kafka topic per table
Previously, to configure OMEGAMON Data Connect to send data to Kafka, you used the
connect.output.kafka.topic key to specify the name of a single destination Kafka topic.

Now, the connect.output.kafka.topic key is optional:

• If you specify the topic key, then the behavior is unchanged: OMEGAMON Data Connect sends
data from all tables to that single topic.

• If you omit the topic key, then OMEGAMON Data Connect sends data for each table to a
separate topic.

The per-table topic names have the following pattern:

topic_prefix.product.table_name

where topic_prefix is the value of the new key connect.output.kafka.topic-prefix
(default: odp).

Example topic name:

2 IBM Z OMEGAMON Data Provider: Installation and User's Guide

odp.km5.ascpuutil

Kafka connection retries after timeout
The following new parameters control retries after an attempt to connect to Kafka times out:
retry-interval

Number of seconds between retries.
max-connection-attempts

Maximum number of connection attempts.
Attribute dictionary

OMEGAMON Data Connect now includes an attribute dictionary. The dictionary is a set of YAML files
that describe the attributes of each table of each supported monitoring agent.

Documentation updates

• OMNIMON Base APAR/PTF level cited as a prerequisite for OMEGAMON Data Provider.
• Improved description of OMEGAMON Data Provider as a Prometheus target.

March 2022: APAR OA62775
Support for more monitoring agents

• IMS:

– IBM OMEGAMON for IMS on z/OS, V5.5
• Java Virtual Machine (JVM):

– IBM Z OMEGAMON for JVM on z/OS, V5.5

OMEGAMON Data Broker
New warning messages report records lost due to the OMEGAMON Data Broker record queue limit
being reached: KAYB0046W, KAYB0047W.

OMEGAMON Data Connect
Multiple TCP outputs

Previously, OMEGAMON Data Connect could send JSON Lines over TCP to only a single
destination. To send to multiple TCP outputs, you had to run multiple instances of OMEGAMON
Data Connect.

Now, a single instance of OMEGAMON Data Connect can send JSON Lines over TCP to multiple
destinations.

Different filter for each output
Previously, you could specify only a global-level filter that applies to all JSON-format outputs: TCP,
Kafka, and STDOUT.

Now, you can also specify a filter for each output. These are known as output-level filters. If you
specify a filter at both levels, the output-level filter replaces the global-level filter.

The combination of multiple TCP outputs and output-level filters means, for example, that a single
instance of OMEGAMON Data Connect can send one set of attributes over TCP to Splunk and a
different set to the Elastic Stack.

Starter dashboards
The starter Elastic Kibana dashboards have moved to a new GitHub repository.

Documentation updates

• Character encoding issues for the YAML documents RKANPARU(KAYOPEN) and connect.yaml.
• Updated example Elastic Stack configuration:

– Uses data streams instead of time-based indices
– Index names now also include the product code as a qualifier, in addition to the existing table

name qualifier

What's new in OMEGAMON Data Provider 3

December 2021: APAR OA62420
Support for more monitoring agents

• CICS:

– IBM OMEGAMON for CICS on z/OS, 5.5
– IBM OMEGAMON for CICS TG on z/OS, 5.5

• Db2:

– IBM Tivoli OMEGAMON XE for Db2 Performance Expert on z/OS, 5.4

OMEGAMON Data Connect
Enhanced validation of field and table names in configuration parameters.

OMEGAMON Data Broker

• Configuration member now supports parameters longer than 80 characters
• New configuration parameters for retrying the connection with OMEGAMON Data Connect:

KAY.CIDB.FWD.OM.CONNECT_RETRY_INTERVAL
KAY.CIDB.FWD.OM.MAX_CONNECT_RETRY_ATTEMPTS

• Support for IPv6 addresses
• Writes significant messages to the JES log

November 2021: First release
OMEGAMON Data Provider was introduced as a part of IBM Z OMEGAMON Integration Monitor.

4 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Introduction to OMEGAMON Data Provider
OMEGAMON Data Provider makes OMEGAMON attributes available to applications and analytics
platforms outside of OMEGAMON.

OMEGAMON
Data Provider

Apache Kafka

Elastic Stack, Splunk...

Prometheus/Grafana

Persistent
data store

OMEGAMON
monitoring agents

OMEGAMON

JSON Lines over TCP

attributes

JSON

Minimum collection interval =
Maximum data frequency = 1 minute

Figure 1. OMEGAMON Data Provider makes attributes available outside of OMEGAMON

OMEGAMON attributes
OMEGAMON agents monitor performance, behavior, and resource usage metrics of systems and
applications on z/OS. OMEGAMON refers to these metrics as attributes.

Related attributes are organized into attribute groups, also referred to as tables. To control which attribute
groups OMEGAMON collects and how frequently it collects them, you create historical collections. To
control the frequency of collection for a group, you specify a collection interval: a minimum of 1 minute to
a maximum of 1 day.

To create historical collections, use the OMEGAMON enhanced 3270 user interface (e3270UI) or Tivoli®
Enterprise Portal (TEP). For more information about creating historical collections, see the OMEGAMON
documentation for e3270UI and TEP.

OMEGAMON stores recently collected attributes, also known as near-term historical data, in a set of files
known as the persistent data store (PDS). For longer-term storage, you can also store attributes in Tivoli
Data Warehouse.

Making attributes available outside of OMEGAMON
OMEGAMON Data Provider introduces the following output methods for collected attributes:

• JSON Lines over TCP
• Prometheus endpoints
• JSON in Apache Kafka topics

These output methods are designed to be easily ingested by applications and analytics platforms outside
of OMEGAMON.

OMEGAMON Data Provider publishes attributes as they are collected. The data frequency is determined
by the collection interval. For example, suppose you have created a historical collection for an attribute
group and set the collection interval to 1 minute. If you configure OMEGAMON Data Provider to send
those attributes as JSON Lines over TCP to an analytics platform such as the Elastic Stack or Splunk, then
the analytics platform receives data for that attribute group every minute.

© Copyright IBM Corp. 2021, 2022 5

Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

OMEGAMON Data Provider architecture
OMEGAMON Data Provider extends OMEGAMON collection tasks and introduces two components:
OMEGAMON Data Broker and OMEGAMON Data Connect.

OMEGAMON Data Provider does not affect any existing historical data collection. Rather, OMEGAMON
Data Provider offers a new destination for collected attributes, as an alternative to, or in addition to, the
OMEGAMON persistent data store (PDS).

The following figure shows the components involved in OMEGAMON Data Provider:

Zowe
cross-memory

server

Java
runtime

environment

OMEGAMON
Data Broker

OMEGAMON
Data Connect

Apache Kafka

Elastic Stack, Splunk...

Prometheus/Grafana

z/OS On or off z/OS

Persistent
data store

OMEGAMON
monitoring

agent

Collection
task

Prometheus
endpoint

JSON Lines over TCP

JSON

Multiple agents,
each with a
collection task

1 2 3

Figure 2. Components involved in OMEGAMON Data Provider

 1 Collection task
OMEGAMON Data Provider extends the existing OMEGAMON collection task in two ways:

• The collection task looks for the member RKANPARU(KAYOPEN).

If this member does not exist, then OMEGAMON Data Provider is dormant and collected attributes
will be stored in PDS only.

Otherwise, this member is a YAML document that specifies the destinations of attributes according
to their table and collection interval. The destinations are: PDS, OMEGAMON Data Provider, both, or
neither.

Sending attributes to OMEGAMON Data Provider only, not PDS, is sometimes referred to as
passthrough.

• The collection task sends attributes to OMEGAMON Data Broker.

 2 OMEGAMON Data Broker
OMEGAMON Data Broker receives attributes from OMEGAMON collection tasks and forwards the
attributes over a TCP network to OMEGAMON Data Connect.

OMEGAMON Data Broker is a plugin for the Zowe™ cross-memory server.

Tip: You don't need to install Zowe. The Zowe cross-memory server is supplied with OMEGAMON Data
Provider in a single load module that has no dependencies on other Zowe components. For details,
see “Prerequisites for OMEGAMON Data Provider” on page 12.

The Zowe cross-memory server runs in its own z/OS address space on the same z/OS instance as the
OMEGAMON collection tasks from which it receives attributes.

6 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://yaml.org/

The behavior of OMEGAMON Data Broker is determined by configuration parameters in the Zowe
cross-memory server configuration member, PARMLIB(ZWESIPxx), consisting of plain-text key-value
pairs.

 3 OMEGAMON Data Connect
OMEGAMON Data Connect receives attributes from OMEGAMON Data Broker, transforms the
attributes from their proprietary binary data format, and publishes the attributes using the following
methods:

• JSON Lines over TCP
• Prometheus endpoints
• JSON in Apache Kafka topics

Each instance of OMEGAMON Data Connect can publish to multiple destinations: one Prometheus
output, one Kafka output, and one or more JSON Lines over TCP outputs.

You can optionally filter which tables (attribute groups) and which fields (attributes) to publish. Each
output can specify a different filter.

OMEGAMON Data Connect is a Java application developed using the Spring Boot framework. The
framework provides features such as application metrics published to Prometheus by Micrometer,
which you can use to monitor OMEGAMON Data Connect activity and performance. For details, see the
Spring Boot documentation.

The behavior of OMEGAMON Data Connect is determined by a YAML document, config/
connect.yaml, in the OMEGAMON Data Connect installation directory.

You can run OMEGAMON Data Connect on or off z/OS.

Of these components, only collection tasks and their configuration member, RKANPARU(KAYOPEN), are in
the OMEGAMON runtime environment (RTE).

The load modules for the collection task, like other RTE load modules, are managed by whichever method
you choose to use: PARMGEN or Monitoring Configuration Manager. However, you are responsible for
managing all other components: OMEGAMON Data Broker, OMEGAMON Data Connect, and the three
configuration members, including RKANPARU(KAYOPEN).

Related concepts
Overview of configurable parts
Before you start configuring OMEGAMON Data Provider, it's useful to understand the parts that you need
to configure and their places in the architecture.
Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
Configuration parameters
OMEGAMON Data Provider has three configuration points: collection tasks, OMEGAMON Data Broker, and
OMEGAMON Data Connect. Each point has its own configuration member containing a set of configuration
parameters.
Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with the JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

OMEGAMON Data Provider topology
OMEGAMON Data Provider topology typically consists of one instance of OMEGAMON Data Broker per
z/OS LPAR, with multiple instances of OMEGAMON Data Broker feeding a single instance of OMEGAMON
Data Connect.

The following figure shows an example topology with multiple instances of OMEGAMON Data Broker
sending data to a single instance of OMEGAMON Data Connect:

Introduction to OMEGAMON Data Provider 7

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Connectz/OS sysplex B

z/OS sysplex A

LPAR B1

LPAR A1

LPAR B2

LPAR A2

OMEGAMON
monitoring agent

OMEGAMON
monitoring agent

OMEGAMON
monitoring agent

OMEGAMON
monitoring agent

One Broker per LPAR

One or more agents
per LPAR

Each Connect
can be fed by
one or more
Brokers

Figure 3. Example OMEGAMON Data Provider topology

OMEGAMON Data Broker can forward to multiple instances of OMEGAMON Data
Connect
You can configure each instance of OMEGAMON Data Broker to forward attributes to multiple instances of
OMEGAMON Data Connect.

The following figure shows an example topology where each instance of OMEGAMON Data Broker feeds
two instances of OMEGAMON Data Connect:

8 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Broker

OMEGAMON
Data Connect

OMEGAMON
Data Connect

Production
analytics dashboards

In-development
analytics dashboards

Each Broker
can feed
one or more
Connects

Development environment

Production environment

Figure 4. Example topology with separate instances of OMEGAMON Data Connect for production and
development

In this example, one instance of OMEGAMON Data Connect belongs to a production environment while
the other instance belongs to a development environment. Configuring OMEGAMON Data Broker to feed
both instances of OMEGAMON Data Connect has the following advantages:

• You can stop, start, and reconfigure the development instance of OMEGAMON Data Connect without
interrupting the flow of attributes to production analytics dashboards.

• You don't have to drive a separate workload to send attributes to in-development analytics dashboards.
The development environment receives attributes from the production workload.

Related reference
Configuration parameters
OMEGAMON Data Provider has three configuration points: collection tasks, OMEGAMON Data Broker, and
OMEGAMON Data Connect. Each point has its own configuration member containing a set of configuration
parameters.
OMEGAMON Data Broker configuration parameters

Introduction to OMEGAMON Data Provider 9

OMEGAMON Data Broker configuration parameters include the host name and port on which OMEGAMON
Data Connect is listening.

Attribute destinations
OMEGAMON Data Provider introduces a choice of destination for attributes: the OMEGAMON persistent
data store (PDS), OMEGAMON Data Provider, or both.

OMEGAMON
Data Provider

Apache Kafka

Analytics platforms

Prometheus

OMEGAMON
persistent
data store

Data store?

OMEGAMON
monitoring agents

Tivoli Data Warehouse

Tivoli Enterprise Portal

OMEGAMON e3270UI

attributes

For each collection
(each combination of table
and collection interval),
you can choose either or
both of these destinations

Database
(Db2, other)

Figure 5. Choice of destinations for attributes

You can choose the destinations for each collection; more specifically, for each combination of attribute
group (table) and collection interval. If you create multiple collections for the same table, but with
different collection intervals, then you can choose different destinations for those collections.

If you want to view attributes in the OMEGAMON enhanced 3270 user interface (e3270UI) or the Tivoli
Enterprise Portal (TEP) user interface, or store attributes in Tivoli Data Warehouse, then you must include
the PDS as a destination.

To pass attributes directly through to OMEGAMON Data Provider without storing them on disk (in the
PDS), specify OMEGAMON Data Provider as the only destination.

Related reference
OMEGAMON Data Provider collection configuration parameters

10 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Collection tasks use OMEGAMON Data Provider collection configuration parameters to select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.

OMEGAMON Data Provider security
You can secure each component of OMEGAMON Data Provider, including their input and output
communication methods.

You can use Transport Layer Security (TLS), including HTTPS (HTTP over TLS), to secure output from
OMEGAMON Data Provider to external applications or analytics platforms.

The following figure shows the connections between components of OMEGAMON Data Provider, and the
options for unsecure versus secure communication protocols.

OMEGAMON
Data Broker

OMEGAMON
Data Connect

z/OS On or off z/OS

TLS/TCP

TLS/TCP

TLS/TCP

HTTPS

TCP

Outputs

JSON

Kafka

Prometheus

TCP

TCP

TCP

HTTP

Client Server

Server

Client

Client

Server

ServerClient 1

4

2

3

Figure 6. OMEGAMON Data Provider communication protocols with or without TLS

Table 1. Connections between OMEGAMON Data Provider components, with links to security parameter
descriptions

Connection Source Destination Secure protocol

 1 Client:
OMEGAMON Data Broker

Server:
OMEGAMON Data Connect
TCP input

TLS over TCP

 2 Client:
OMEGAMON Data Connect
TCP output

Server:
Analytics platform or application

TLS over TCP

 3 Client:
OMEGAMON Data Connect
Kafka output

Server:
Kafka server

TLS over TCP

 4 Server:
OMEGAMON Data Connect
Prometheus output

Client:
Prometheus server
acting as an HTTP(S) client

HTTPS

Introduction to OMEGAMON Data Provider 11

To control the permission to run each component of OMEGAMON Data Provider and access to the related
data sets, use your system's access control facility. For example, on z/OS, use RACF®.

Starter dashboards
You can get a set of starter Elastic Kibana dashboards that visualize attributes from OMEGAMON Data
Provider.

The starter dashboards are available from GitHub. For details, see the documentation website.

You can use the starter dashboards as a starting point for analyzing your own data and developing your
own dashboards.

If you cannot access GitHub, then, for alternative methods of getting the starter dashboards, contact your
IBM Software representative for OMEGAMON products.

Related tasks
Integrating the Elastic Stack with OMEGAMON Data Provider
To integrate the Elastic Stack with OMEGAMON Data Provider, you can configure the OMEGAMON Data
Connect component of OMEGAMON Data Provider to send attributes as JSON Lines over TCP to Logstash.
You can configure Logstash to listen on a TCP port for that JSON Lines and forward the attributes to
Elasticsearch.

Prerequisites for OMEGAMON Data Provider
Before installing OMEGAMON Data Provider, check that you have the prerequisite software.

Prerequisite OMEGAMON software
You must have an OMEGAMON product suite installed on z/OS that includes the following components:

• OMNIMON Base, minimum version 7.5.0, APAR/PTF level OA62052/UJ06872.
• IBM Z OMEGAMON Integration Monitor, minimum version 5.6.0.

OMEGAMON Data Provider is a part of IBM Z OMEGAMON Integration Monitor.

OMEGAMON Data Provider is packaged in its own FMID, HKOA110. You must have this FMID installed.
• One or more monitoring agents supported by OMEGAMON Data Provider.

To meet that requirement, you need one of the following product suites:

• IBM Z Monitoring Suite, minimum version 1.2.1
• IBM Z Service Management Suite, minimum version 2.1.1

OMEGAMON runtime environment
Configure an OMEGAMON runtime environment that you want to use with OMEGAMON Data Provider.

At a minimum, the runtime environment must include the following items:

• A monitoring server.
• One or more monitoring agents supported by OMEGAMON Data Provider.
• Historical data collection configured to collect at least one attribute group from one of those monitoring

agents.

For example, Address Space CPU Utilization attributes (table name: ascpuutil).

Important: Except for attribute tables that must be collected at the TEMS (monitoring server), set the
collection location of the historical data collection to TEMA (monitoring agent).

If you plan to use this runtime environment as a data source for the starter Elastic Kibana dashboards
for OMEGAMON Data Provider, then see the separate documentation for those dashboards for details
on which tables you need to collect.

12 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://z-open-data.github.io/odp-elastic-samples/
https://www.ibm.com/docs/en/om-zmon-suite
https://www.ibm.com/docs/en/zsms2

Before proceeding, test that the runtime environment successfully collects attributes. For example, view
the attribute data in the OMEGAMON enhanced 3270 user interface (e3270UI) or in Tivoli Enterprise
Portal (TEP).

Java
OMEGAMON Data Connect is a Java application that requires Java 8, or later, 64-bit edition.

If you plan to run OMEGAMON Data Connect on z/OS: the supplied sample JCL to run OMEGAMON Data
Connect assumes that you have the Java Batch Launcher (JZOS) installed. For details, see the JZOS
documentation; for example, in the IBM SDK, Java Technology Edition 8 documentation.

Starter Elastic Kibana dashboards
You can get starter Elastic Kibana dashboards that visualize attributes from OMEGAMON Data Provider.

The starter dashboards are not a prerequisite. They are an optional, ready-made starting point for
analyzing output from OMEGAMON Data Provider. You can process output from OMEGAMON Data
Provider with the software of your choice. For example:

• You can use a command-line TCP listener tool to save JSON Lines from OMEGAMON Data Provider to a
file, and then examine the contents of the file in an editor.

• You can configure your analytics platform to ingest attributes from OMEGAMON Data Provider.
• You can develop your own application to process attributes from OMEGAMON Data Provider.

Zowe is not a prerequisite
The OMEGAMON Data Broker component of OMEGAMON Data Provider is a plugin for the Zowe cross-
memory server. However, OMEGAMON Data Provider does not require you to install Zowe.

Instead, the Zowe cross-memory server is supplied with OMEGAMON Data Provider in a single load
module that has no dependencies on other Zowe components. OMEGAMON Data Provider has no Zowe
requirements beyond the Zowe cross-memory server.

If you already have Zowe installed (minimum version: 1.24), then you can configure your existing Zowe
cross-memory server to run OMEGAMON Data Broker. For details, see “Configuring OMEGAMON Data
Broker” on page 21.

Related concepts
Starter dashboards
You can get a set of starter Elastic Kibana dashboards that visualize attributes from OMEGAMON Data
Provider.
Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Introduction to OMEGAMON Data Provider 13

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=components-jzos-batch-launcher-toolkit

14 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Installing OMEGAMON Data Provider
If you have the prerequisite software, then OMEGAMON Data Provider is already installed in your z/OS
SMP/E target libraries. However, you might want to install some components in other locations.

Read “OMEGAMON Data Provider architecture” on page 6 so that you understand the components
involved.

Ensure that you have the prerequisite software, such as an OMEGAMON runtime environment (RTE) that
you want to use with OMEGAMON Data Provider. See “Prerequisites for OMEGAMON Data Provider” on
page 12.

You need to know the SMP/E target locations of OMEGAMON. In particular:

• The high-level qualifiers of the TKAN* MVS™ libraries, such as TKANMODP
• The z/OS UNIX path specified by the SMP/E DDDEF TKAYHFS

If you do not know these locations, then contact the person who installed OMEGAMON.

The following procedure ensures that each component is installed in the correct location.

1. Ensure that your RTE load modules are at the prerequisite software levels.

If you have not already done so, follow your site-specific procedures to refresh the runtime members
in the RKANMOD* libraries of your RTE from the TKANMOD* SMP/E target libraries. For example, perform
the GENERATE action of Monitoring Configuration Manager.

This step ensures that the collection tasks in your RTE support OMEGAMON Data Provider.
2. Decide whether you want to host OMEGAMON Data Broker in an existing instance of the Zowe cross-

memory server on your system or create a new instance.

If you already have Zowe installed (minimum version: 1.24), then you can configure your existing Zowe
cross-memory server to run OMEGAMON Data Broker. For details, see “Configuring OMEGAMON Data
Broker” on page 21.

3. Decide where you want to store the load modules for OMEGAMON Data Broker.

OMEGAMON Data Broker involves the following load modules:

ZWESIS01
Zowe cross-memory server.

KAYB0001
OMEGAMON Data Broker, a plugin for the Zowe cross-memory server.

KAYBNETL
A load module used by OMEGAMON Data Broker.

The STEPLIB of the Zowe cross-memory server must include the KAYB0001 and KAYBNETL load
modules.

If you decide to use an existing instance of the Zowe cross-memory server (minimum Zowe version:
1.24), then you must make the OMEGAMON Data Broker plugin available to the server. Copy the load
modules TKANMODP(KAYB0001) and TKANMODP(KAYBNETL) to a data set in the STEPLIB of the job
step that runs the Zowe cross-memory server. For example, the same library that contains the Zowe
cross-memory server load module, ZWESIS01.

Otherwise, use the Zowe cross-memory server load module supplied with OMEGAMON Data Provider:

a. Rename the load module supplied with OMEGAMON Data Provider in TKANMODP(KAYSIS01) to
the member name ZWESIS01.

You must rename this module for the following reasons:

The module loads itself into the link pack area (LPA) and relies on the ZWESIS01 module name
to do that.

© Copyright IBM Corp. 2021, 2022 15

The current implementation does not support the use of an alias.
b. If you want to run OMEGAMON Data Broker from a different library than TKANMODP, then copy
ZWESIS01, KAYB0001, and KAYBNETL to a different APF-authorized library.

4. Decide whether you want to run OMEGAMON Data Connect on or off z/OS.

SMP/E installation steps for the prerequisite OMEGAMON products create a z/OS UNIX directory,
specified by the DDDEF name TKAYHFS, that contains OMEGAMON Data Connect. The default directory
path is /usr/lpp/omdp.

That z/OS UNIX directory contains three files and one subdirectory:

KAY11PAX
A pax interchange format archive file containing the OMEGAMON Data Connect installation
directory.

KAY11SH
A z/OS UNIX shell script that extracts the pax file KAY11PAX into the subdirectory kay-110.

This script will already have been run by an SMP/E APPLY command when the prerequisite
OMEGAMON software was installed.

KAY11ZIP
A compressed binary file with the same contents as the KAY11PAX file, but using a different
compressed file format.

kay-110
The OMEGAMON Data Connect installation directory. This directory contains the expanded files for
running OMEGAMON Data Connect.

If you want to run OMEGAMON Data Connect on z/OS, but you would prefer to run it from a location
that is not an SMP/E target, then copy the kay-110 directory to the z/OS UNIX path of your choice.

If you want to run OMEGAMON Data Connect off z/OS, then transfer the binary file KAY11ZIP from
z/OS UNIX to another platform, such as Linux®. Consider renaming the transferred copy with a .zip
file extension. To create the OMEGAMON Data Connect installation directory kay-110, expand the
compressed file.

The software components involved in OMEGAMON Data Provider are now installed in the locations you
will run them. Before you run them, you must configure them.

16 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Overview of configurable parts
Before you start configuring OMEGAMON Data Provider, it's useful to understand the parts that you need
to configure and their places in the architecture.

All OMEGAMON Data Provider configurable parts are text members that you can edit in a text editor such
as the z/OS ISPF editor.

For each configurable part, OMEGAMON Data Provider supplies a sample member that you can use as a
starting point.

OMEGAMON Data Provider involves two types of configurable parts:

• Members that run components:
PROCLIB(ZWESIS01)

JCL procedure that runs the Zowe cross-memory server that hosts OMEGAMON Data Broker.
PROCLIB(KAYCONN)

JCL procedure that runs OMEGAMON Data Connect.
bin/connect

UNIX shell script that runs OMEGAMON Data Connect. You can use this either on or off z/OS.
• Members that configure components:
RKANPARU(KAYOPEN)

A YAML document that specifies collection configuration parameters, such as which attribute groups
to send to OMEGAMON Data Broker.

PARMLIB(ZWESIPxx)
A plain-text member that specifies OMEGAMON Data Broker parameters, such as the host and port
on which OMEGAMON Data Connect is listening.

connect.yaml
A YAML document that specifies OMEGAMON Data Connect configuration parameters, such as the
output method for attributes.

The following figure shows the configurable parts and their corresponding sample members:

© Copyright IBM Corp. 2021, 2022 17

TKANSAM(KAYBRP00)

PROCLIB(ZWESIS01)

TKANSAM(ZWESIS01)

path/connect.yaml

PROCLIB(KAYCONN)

sample/KAYCONN

bin/connect

config/connect*.yaml

OMEGAMON
Data Broker

OMEGAMON
Data ConnectCollection task

OMEGAMON
runtime environment

Zowe
cross-memory server

Configuration members

Members that run components

Sample members

Sample JCL procedures

UNIX shell script

Use on or off z/OS

Store in the
path of your
choice

Base z/OS UNIX path is specified
by SMP/E DDDEF KAYHFS

You must have already
configured historical
collection in your RTE

TKANSAM(K OPEN)AY

RKANPARU(K OPEN)AY PARMLIB(ZWESIP)xx
YAMLYAML

CP1047

CP1047 ISO8859-1

ISO8859-1

Requires JZOS

Figure 7. OMEGAMON Data Provider configurable parts

In the previous figure, annotations indicate the data format or character encoding of a member:

 YAML
The member is a YAML document.

For details on the YAML format, including character encoding issues, see the topic for each document:
RKANPARU(KAYOPEN) and connect.yaml.

 CP1047
The member is encoded using EBCDIC code page 1047.

The JCL procedure that runs OMEGAMON Data Connect, PROCLIB(KAYCONN), contains an in-stream
STDENV data set that must be encoded in CP1047.

 ISO8859-1
The member is encoded using ISO8859-1 (CCSID 819), an 8-bit superset of ASCII.

Related concepts
OMEGAMON Data Provider architecture
OMEGAMON Data Provider extends OMEGAMON collection tasks and introduces two components:
OMEGAMON Data Broker and OMEGAMON Data Connect.

18 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Getting started with OMEGAMON Data Provider
After installing OMEGAMON Data Provider, you need to configure and then start its components.

These procedures configure OMEGAMON Data Provider to send attributes in JSON Lines format over TCP
to a listening application or analytics platform, such as the Elastic Stack.

Zowe
cross-memory

server

Java
runtime

environment

OMEGAMON
Data Broker

OMEGAMON
Data Connect

Application or
analytics
platform

z/OS On or off z/OS

OMEGAMON
Monitor for z/OS
monitoring agent

Collection
task

JSON Lines over TCP
TCP

Figure 8. Architecture of the "getting started" exercise: sending JSON Lines over TCP

These procedures configure each OMEGAMON Data Provider component, and then, when all the
components have been configured, start the components.

Use these procedures as an introductory exercise for configuring OMEGAMON Data Provider for other
attribute groups and analytics platforms.

For comprehensive details on configuring each component of OMEGAMON Data Provider, see
“Configuration parameters” on page 39.

These procedures configure and start OMEGAMON Data Provider on one z/OS instance (LPAR).

To use OMEGAMON Data Provider to send attributes from other LPARs, you need to configure and start
OMEGAMON Data Provider on each LPAR. You don't necessarily need to configure and start an instance
of OMEGAMON Data Connect for each LPAR. That topology depends on your specific requirements. For
details, see “OMEGAMON Data Provider architecture” on page 6.

Configuring which collections to send to OMEGAMON Data Broker
You need to specify which historical collections to send to OMEGAMON Data Broker.

Historical collections are a prerequisite for using OMEGAMON Data Provider.

To create historical collections, use the OMEGAMON enhanced 3270 user interface (e3270UI) or Tivoli
Enterprise Portal (TEP). For more information about creating historical collections, see the OMEGAMON
documentation for e3270UI and TEP.

Some analytics platforms might require, or provide specific support for, particular attributes. You need to
create the corresponding historical collections for those attributes. For information about some analytics
platforms, see “Integrating analytics platforms with OMEGAMON Data Provider” on page 25. Otherwise,
see the documentation for your analytics platform.

You need to know the location of the TKANSAM library installed by the prerequisite OMEGAMON software.

OMEGAMON Data Provider uses RKANPARU library member KAYOPEN to specify destinations for historical
collections.

The KAYOPEN member is optional. If you omit it, then collected attributes are sent only to the persistent
data store (PDS), not OMEGAMON Data Broker.

© Copyright IBM Corp. 2021, 2022 19

KAYOPEN specifies which attribute groups (tables) to send to OMEGAMON Data Broker. Later, when
configuring OMEGAMON Data Connect, you can specify which attributes (fields) to publish from those
tables.

The TKANSAM library contains a sample KAYOPEN member.

1. Copy the TKANSAM(KAYOPEN) member to a location of your choice where you want to permanently
store your primary customized copy of this member.

Attention: Do not maintain your primary copy of the KAYOPEN member in the RKANPARU
library. Maintain it in a different location of your choice, and copy it from that location into
RKANPARU. PARMGEN and Monitoring Configuration Manager do not manage the KAYOPEN
member. Some actions of PARMGEN and Monitoring Configuration Manager, such as the
GENERATE action of Monitoring Configuration Manager, delete existing members of the
RKANPARU library of an RTE. Each time you perform such an action, you must copy the
KAYOPEN member into the RKANPARU library.

2. Edit the KAYOPEN member in the permanent location you have chosen to maintain it.

broker:
 name: ZWESIS_STD # 1
collections:
 - product: km5 # 2
 table: assumry
 interval: 1
 destination:
 - open
 - pds
 - product: km5
 table: ascpuutil
 interval: 1
 destination:
 - open
 - pds

Figure 9. Excerpt of example OMEGAMON Data Provider collection configuration member, KAYOPEN

 1
In the broker.name key (the name child key of the broker key), specify the name of the Zowe
cross-memory server that runs OMEGAMON Data Broker.

This name is the value of the NAME runtime parameter of the JCL EXEC statement that runs the
Zowe cross-memory server program, ZWESIS01.

The default value is ZWESIS_STD.

 2
For each existing historical collection that you want to send to OMEGAMON Data Broker, insert a
corresponding entry under the collections key.

Each entry must specify the following details:

• The kpp product code of the monitoring agent that owns the table.
• The table name.
• The collection interval, in minutes; or 0 to select all collections for this table, regardless of

collection interval.
• Destinations. To send attributes to OMEGAMON Data Broker, the destinations must include the

value open.
3. Copy the customized KAYOPEN member from its permanent location to the RKANPARU library of your

OMEGAMON runtime environment.
4. If the monitoring agents that own the tables for the collections are running, then reload the collection

configuration in each of the affected agents.

20 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Related tasks
Reloading collection configuration
After updating collection configuration parameters in the RKANPARU(KAYOPEN) member, you need to
apply the configuration changes to the affected collection tasks. To apply the changes, you can either
restart the jobs that run the collection tasks, or enter the MVS MODIFY system command presented here.
Adding more collections to OMEGAMON Data Provider
If you have already configured an OMEGAMON runtime environment to send collections to OMEGAMON
Data Provider, then follow the steps here to add more.
Related reference
OMEGAMON Data Provider collection configuration parameters
Collection tasks use OMEGAMON Data Provider collection configuration parameters to select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Configuring OMEGAMON Data Broker
OMEGAMON Data Broker is a plugin for the Zowe cross-memory server. You need to add OMEGAMON
Data Broker parameters to the Zowe cross-memory server PARMLIB member. If you plan to host
OMEGAMON Data Broker in a new instance of the Zowe cross-memory server, then you need to configure
the JCL procedure that runs the server.

You need to know the location of the TKANSAM library installed by the prerequisite OMEGAMON software.

If you plan to use an existing instance of the Zowe cross-memory server to host OMEGAMON Data Broker,
then you need to know the location of the JCL procedure that runs that server.

This task involves the following members supplied by the prerequisite OMEGAMON software:

TKANSAM(ZWESIS01)
JCL procedure that runs the Zowe cross-memory server. This member is required only if you are
creating a new instance of the Zowe cross-memory server.

This member is a verbatim copy of a file in the public Zowe repository. This file does not refer to
OMEGAMON Data Broker.

TKANSAM(KAYBRP00)
OMEGAMON Data Broker configuration parameters that you need to add to the Zowe cross-memory
server configuration member, PARMLIB(ZWESIPxx).

1. If you have decided to host OMEGAMON Data Broker in an existing instance of the Zowe cross-memory
server, append the contents of TKANSAM(KAYBRP00) to the existing PARMLIB(ZWESIPxx) member,
and then skip to step “8” on page 23.

Otherwise, if you have decided to use the Zowe cross-memory server load module provided with
OMEGAMON Data Provider, proceed to the next step.

2. Modify the z/OS MVS program properties table (PPT) to make the Zowe cross-memory server run in
key 4 and be non-swappable.
a) Edit the PPT definition member SYS1.PARMLIB(SCHEDxx).

Add the following entry:

PPT PGMNAME(ZWESIS01) KEY(4) NOSWAP

b) Modify the PPT.
Example MVS system command:

SET SCH=xx

Getting started with OMEGAMON Data Provider 21

3. Ensure that the library that contains the Zowe cross-memory server load module, ZWESIS01, and the
load modules for OMEGAMON Data Broker, KAYB0001 and KAYBNETL, is APF-authorized.

To check the APF-authorization status of the library, enter the following MVS system command:

D PROG,APF,DSNAME=loadlib

where loadlib is the data set name of the library. For example, the TKANMODP library.

To dynamically add the SMS-managed library to the APF list, enter:

SETPROG APF,ADD,DSNAME=loadlib,SMS

4. Copy the TKANSAM(KAYBRP00) member, renamed to member name ZWESIP00, to your choice of
PARMLIB library. For example, SYS1.PARMLIB.

5. Copy the TKANSAM(ZWESIS01) JCL procedure to your choice of PROCLIB library. For example,
SYS1.PROCLIB.

6. Edit the new copy of the PROCLIB(ZWESIS01) JCL procedure.

//ZWESIS01 PROC NAME='ZWESIS_STD',MEM=00,RGN=0M 1 2 3
…
//ZWESIS01 EXEC PGM=ZWESIS01,REGION=&RGN, 4
// PARM='NAME=&NAME,MEM=&MEM'
//STEPLIB DD DSNAME=ZWES.SISLOAD,DISP=SHR 5
//PARMLIB DD DSNAME=ZWES.SISSAMP,DISP=SHR 6
//SYSPRINT DD SYSOUT=*

Figure 10. JCL procedure that starts the Zowe cross-memory server, PROCLIB(ZWESIS01)

 1
If you are only using this instance of the Zowe cross-memory server to run the OMEGAMON Data
Broker plugin, then consider renaming the procedure with a prefix, such as OMEG, that matches
related jobs; so that the Zowe cross-memory server job is included when you list job names with
that prefix. For example, OMEGKAYB, where KAY is the component prefix for OMEGAMON Data
Provider, and B is for "Broker".

 2
The default name of the Zowe cross-memory server is ZWESIS_STD. You only need to change this
value if you run more than one instance of the server on the same instance of z/OS.

 3
The MEM parameter specifies the last two characters of the Zowe cross-memory server PARMLIB
member name, ZWESIPxx. The default suffix is 00. You only need to change this value if you have
different versions of this member in the PARMLIB.

 4
The load module member name must be ZWESIS01. Do not refer to the original member name
KAYSIS01 supplied with OMEGAMON Data Provider.

 5
Edit the STEPLIB DD statement to refer to the location of the Zowe cross-memory server load
module, ZWESIS01, the load modules for OMEGAMON Data Broker, KAYB0001 and KAYBNETL.

Note:

• The STEPLIB data set type must be partitioned data set extended (PDSE), not PDS.
• The STEPLIB data set, or data sets (if you decide to keep the ZWESIS01, KAYB0001, and
KAYBNETL load modules in different data sets), must be APF-authorized.

• Use a STEPLIB DD statement to identify the location of the Zowe cross-memory server load
library, so that the job refers to the appropriate specific version of the software. Do not add the
load library to the system LNKLST or LPALST.

22 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• The Zowe cross-memory server loads itself into the link pack area (LPA) so that it can use PC-cp
services (program call in the user's primary address space).

 6
Either edit the PARMLIB DD statement to refer to the PARMLIB library containing the ZWESIPxx
member or, if you copied that member to the system PROCLIB, remove this statement.

7. Define the Zowe cross-memory server JCL procedure PROCLIB(ZWESIS01) as a started task.

The user that you associate with this started task must have an OMVS segment.

Example RACF commands:

RDEFINE STARTED ZWES*.* STDATA(USER(OMEGSTC) GROUP(STCGROUP)
PRIVILEGED(NO) TRUSTED(NO) TRACE(YES))
SETROPTS RACLIST(STARTED) REFRESH

8. Edit the OMEGAMON Data Broker parameters in the PARMLIB(ZWESIPxx) member.

Set the values of the following parameters:

KAY.CIDB.FWD.forwarder_id.SINK_HOST=connect_host_name
Host name or IP address of the OMEGAMON Data Connect instance that is listening for data from
OMEGAMON Data Broker.

In the context of the OMEGAMON Data Broker forwarder, OMEGAMON Data Connect is a sink: a
destination.

If you plan to run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data
Broker, then you can specify the value localhost or the local loopback IP address. The typical
local loopback IPv4 address is 127.0.0.1.

KAY.CIDB.FWD.forwarder_id.SINK_PORT=connect_port
The port on which OMEGAMON Data Connect is listening. Follow your site-specific standards for
assigning port numbers.

9. If you are using an existing instance of the Zowe cross-memory server, don't restart it yet with the
updated configuration.
We'll restart it later, after you have configured all components.

When the Zowe cross-memory server starts, it will load the OMEGAMON Data Broker plugin, and
OMEGAMON Data Broker will connect to OMEGAMON Data Connect.

Related reference
OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the host name and port on which OMEGAMON
Data Connect is listening.

Configuring OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application that can run on or off z/OS.

You need to know the paths of the following directories:

• OMEGAMON Data Connect installation directory. The default installation directory name is kay-110.
• Java runtime environment that you plan to use to run OMEGAMON Data Connect: 64-bit, Java 8 or later.

1. Configure a z/OS started task, or a script off z/OS, to run OMEGAMON Data Connect.

• On z/OS:

a. Copy the JCL procedure sample/KAYCONN from the OMEGAMON Data Connect installation
directory to your choice of MVS PROCLIB library. For example, SYS1.PROCLIB.

b. Define the new PROCLIB(KAYCONN) procedure as a started task.

Getting started with OMEGAMON Data Provider 23

Example RACF commands:

RDEFINE STARTED KAYCONN.* STDATA(USER(OMEGSTC) GROUP(STCGROUP))
SETROPTS RACLIST(STARTED) REFRESH

Tip: For ad hoc testing of OMEGAMON Data Connect from a z/OS UNIX shell, use the sample
Unix shell script bin/connect as a starting point.

• Off z/OS: Copy the sample Unix shell script bin/connect the location of your choice, as a starting
point for your own site-specific script to run OMEGAMON Data Connect.

2. Edit your copy of the sample procedure or script to refer to paths on your system.
Java home directory

Specified by the JAVAHOME environment variable
OMEGAMON Data Connect installation directory

Specified by the KAYHOME environment variable
OMEGAMON Data Connect configuration file

Specified by the spring.config.additional-location option.

Tip: To avoid service updates overwriting your edited version of this file, consider setting
spring.config.additional-location in the OMEGAMON Data Connect startup procedure
or script to a file path outside of the OMEGAMON Data Connect installation directory.

Example (note the equal sign between the option name and value):

--spring.config.additional-location=/u/kay/config/connect.yaml

3. Copy the supplied sample OMEGAMON Data Connect configuration file to the path that you specified
in the spring.config.additional-location option, and then edit the parameters to match your
site-specific values.
Sample file path: config/connect.yaml in the OMEGAMON Data Connect installation directory.

Example:

connect:
 input:
 tcp:
 enabled: true
 hostname: <connect_host> # 1
 port: <connect_port> # 2
 output:
 tcp:
 enabled: true
 sinks:
 logstash: # Your choice of sink name (not a fixed key name)
 enabled: true
 hostname: <logstash_host> # 3
 port: <logstash_port> # 4

 1
Host name or IP address on which the OMEGAMON Data Connect host listens for data from
OMEGAMON Data Broker.

If you run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data Broker, then
you can specify localhost as the host name.

This value must match the OMEGAMON Data Broker parameter KAY.CIDB.FWD.OM.SINK_HOST.

 2
Port on which to listen for data from OMEGAMON Data Broker.

This value must match the OMEGAMON Data Broker parameter KAY.CIDB.FWD.OM.SINK_PORT.

24 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 3
Destination host name or IP address to send data. For example, the host running Elastic Logstash.

 4
Port on which the destination host is listening for JSON Lines over TCP.

Some analytics platforms might require, or provide specific support for, particular attributes. You
might choose to filter the output from OMEGAMON Data Connect to send only those attributes. For
information about some analytics platforms, see “Integrating analytics platforms with OMEGAMON
Data Provider” on page 25. Otherwise, see the documentation for your analytics platform.

Related reference
OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.

Integrating analytics platforms with OMEGAMON Data Provider
Use the information provided here together with the product documentation for your analytics platform.

Integrating Instana with OMEGAMON Data Provider
To integrate Instana with OMEGAMON Data Provider, you can configure the OMEGAMON Data Connect
component of OMEGAMON Data Provider to send attributes as JSON Lines over TCP. You can also
configure OMEGAMON Data Provider to send just the attributes that Instana specifically supports.

This documentation provides details for configuring OMEGAMON Data Provider to send attributes to
Instana; specifically, to IBM Observability by Instana Application Performance Monitoring on z/OS.

For details of the Instana architecture and information about configuring Instana to ingest attributes from
OMEGAMON Data Provider, see the IBM Observability by Instana Application Performance Monitoring on
z/OS documentation.

Note: The information presented here about Instana is current as of 14 June 2022.

Overview of Instana integration with OMEGAMON Data Provider
Instana is one of several analytics platforms that can ingest attributes from OMEGAMON Data Provider as
JSON Lines over TCP.

OMEGAMON
ProviderData

Instana
architecture

TCP port

JSON Lines over TCP

attributes

Figure 11. Instana ingests attributes from OMEGAMON Data Provider as JSON Lines over TCP

When sending to Instana, it's useful to send just the attributes that Instana specifically supports. If you
send attributes that Instana does not specifically support, then Instana will ingest them, but not use
them. If you omit attributes that Instana specifically supports, then you won't be taking full advantage of
that support.

Historical data collections
Historical data collections are a prerequisite for using OMEGAMON Data Provider. Before configuring
OMEGAMON Data Provider, you need to create a historical collection for each attribute group supported
by Instana.

Getting started with OMEGAMON Data Provider 25

https://www.ibm.com/docs/en/obiapmoz?topic=configuration-integrating-omegamon
https://www.ibm.com/docs/en/obiapmoz?topic=configuration-integrating-omegamon

To create historical collections, use the OMEGAMON enhanced 3270 user interface (e3270UI) or Tivoli
Enterprise Portal (TEP). For more information about creating historical collections, see the OMEGAMON
documentation for e3270UI and TEP.

Instana supports attribute groups from the following OMEGAMON monitoring agents:

IBM Z OMEGAMON Monitor for z/OS (product code: km5)

Table 2. Historical data collections for Instana: z/OS

table_name
field value

Attribute group Collection
interval

(minutes)

m5stgcdth Common Storage Utilization History 5

m5stgfdth Real Storage Utilization History 5

syscpuutil System CPU Utilization 1

IBM Z OMEGAMON for CICS (kc5)

Table 3. Historical data collections for Instana: CICS

table_name
field value

Attribute group Collection
interval

(minutes)

cicsrov CICSplex Overview 1

IBM OMEGAMON for Db2 Performance Expert on z/OS (kd5)

Table 4. Historical data collections for Instana: Db2

table_name
field value

Attribute group Collection
interval

(minutes)

dp_sy_exc Db2 System States 1

opersys z/OS System Statistics 1

db2lkconf Local Db2 Lock Conflict 1

dp_srm_sub Db2 SRM Subsystem 1

dp_ci_excs Db2 CICS Exceptions 1

dp_im_conn Db2 IMS Connections 1

OMEGAMON Data Provider configuration members
The following two configuration members specify which attributes OMEGAMON Data Provider sends, and
to where:

RKANPARU(KAYOPEN)
Specifies which attribute groups to send to OMEGAMON Data Broker.

OMEGAMON Data Broker forwards attributes to OMEGAMON Data Connect.

connect.yaml
Specifies which attribute groups, or specific attributes, to send to each output of OMEGAMON Data
Connect, such as Instana.

26 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Collection task

OMEGAMON
runtime environment

RKANPARU(K OPEN)AY connect.yaml

OMEGAMON
Data Broker

OMEGAMON
Data Connect

Instana
architecture

TCP port

JSON Lines over TCP

Which attributes to send to Broker Which attributes to send to Instana

Configuration members that specify which attributes to send

Figure 12. Configuring which attributes OMEGAMON Data Provider sends, and to where

Example KAYOPEN member
The "getting started" task “Configuring which collections to send to OMEGAMON Data Broker” on page 19
describes editing the KAYOPEN member. When you reach that step, use the following example KAYOPEN
member, which matches the historical collections listed in the previous tables.

broker:
 name: ZWESIS_STD
collections:
 - product: km5
 table: syscpuutil
 interval: 0
 destination:
 - pds
 - open
 - product: km5
 table: m5stgcdth
 interval: 0
 destination:
 - pds
 - open
 - product: km5
 table: m5stgfdth
 interval: 0
 destination:
 - pds
 - open
 - product: kc5
 table: cicsrov
 interval: 0
 destination:
 - pds
 - open
 - product: kd5
 table: dp_sy_exc
 interval: 0
 destination:
 - pds
 - open
 - product: kd5
 table: opersys
 interval: 0
 destination:

Getting started with OMEGAMON Data Provider 27

 - pds
 - open
 - product: kd5
 table: db2lkconf
 interval: 0
 destination:
 - pds
 - open
 - product: kd5
 table: dp_srm_sub
 interval: 0
 destination:
 - pds
 - open
 - product: kd5
 table: dp_ci_excs
 interval: 0
 destination:
 - pds
 - open
 - product: kd5
 table: dp_im_conn
 interval: 0
 destination:
 - pds
 - open

Example connect.yaml
The "getting started" task “Configuring OMEGAMON Data Connect” on page 23 describes editing
connect.yaml. When you reach that step, specify a TCP output that refers to the host and port on
which Instana is listening, and refer to the Instana filter include file that is embedded in OMEGAMON Data
Connect. For example:

connect:
 output:
 tcp:
 enabled: true
 sinks: # One or more sinks (destinations)
 instana: # Each sink has a unique name of your choice
 enabled: true
 hostname: instana-host
 port: instana-port
 filter: # Refers to a file embedded in the Connect JAR file
 enabled: true
 include: filters/instana.yaml

Embedded instana.yaml filter include file
You don't need to know the contents of the Instana filter include file that is embedded in OMEGAMON
Data Connect. You just refer to the file path, as shown in the previous connect.yaml listing.

However, for interest, here is the contents of that file as supplied with OMEGAMON Data Provider,
APAR level OA63141. Note that the filter corresponds to the collections listed previously in the example
KAYOPEN member.

enabled: true
products:
 km5:
 tables:
 syscpuutil:
 enabled: true

28 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 m5stgcdth:
 enabled: true
 m5stgfdth:
 enabled: true
 kc5:
 tables:
 cicsrov:
 enabled: true
 kd5:
 tables:
 dp_sy_exc:
 enabled: true
 opersys:
 enabled: true
 db2lkconf:
 enabled: true
 dp_srm_sub:
 enabled: true
 dp_ci_excs:
 enabled: true
 dp_im_conn:
 enabled: true

Integrating the Elastic Stack with OMEGAMON Data Provider
To integrate the Elastic Stack with OMEGAMON Data Provider, you can configure the OMEGAMON Data
Connect component of OMEGAMON Data Provider to send attributes as JSON Lines over TCP to Logstash.
You can configure Logstash to listen on a TCP port for that JSON Lines and forward the attributes to
Elasticsearch.

The information provided here assumes that you are familiar with the Elastic Stack, that you know how to
configure the Elastic Stack to ingest data, and that you want to configure your own existing instance of the
Elastic Stack.

If you are new to the Elastic Stack, then instead of using the information here, consider using the
information provided with the starter dashboards as a starting point.

Related concepts
Starter dashboards
You can get a set of starter Elastic Kibana dashboards that visualize attributes from OMEGAMON Data
Provider.
Related reference
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.

Basic Elastic Stack configuration for OMEGAMON Data Provider
To ingest JSON Lines from OMEGAMON Data Connect into the Elastic Stack, you need to define a Logstash
configuration and an Elasticsearch index template.

The following Elastic Stack configuration defines a minimal basic configuration for ingesting JSON Lines
over TCP from OMEGAMON Data Connect.

The configuration described here is a minimal subset of the more detailed configuration for the starter
Kibana dashboards.

Elasticsearch configuration
By default, Elasticsearch maps incoming string fields to the text data type. Elasticsearch parses the
contents of text fields into tokens for full-text search. You might not want that default behavior for
OMEGAMON attribute string values. Many OMEGAMON string fields are names or identifiers. It makes

Getting started with OMEGAMON Data Provider 29

more sense to search these fields as whole values, so the keyword data type is a better choice. You can
configure Elasticsearch by creating an index template that maps string fields to the keyword data type.

The result of this mapping is no .raw fields. Instead, you use the original field names for sorting and
aggregation, because the fields have been mapped to the keyword data type.

For example, you can use the following JSON as the body of an Elasticsearch create index template API
request:

{
 "index_patterns": ["omegamon-*"],
 "template": {
 "settings": {
 "lifecycle": {
 "name": "omegamon-ds-ilm-policy"
 }
 },
 "mappings": {
 "dynamic_templates": [{
 "strings": {
 "match_mapping_type": "string",
 "mapping": {
 "type": "keyword"
 }
 }
 }]
 }
 },
 "data_stream": { }
}

Figure 13. Elasticsearch index template that maps string fields to the keyword data type

Set the index_patterns key value to match your site practices for Elasticsearch index names.

Set the lifecycle.name to the Elasticsearch index lifecycle policy that you want to use for this data.

The presence of the data_stream object in the index template enables data streams.

This example is for use with the _index_template API endpoint for composable index templates, not
the endpoint for deprecated legacy index templates.

Logstash pipeline configuration
The following Logstash config listens on a TCP port for JSON Lines from OMEGAMON Data Connect.

30 IBM Z OMEGAMON Data Provider: Installation and User's Guide

input {
 tcp {
 id => "omegamon_tcp_input"
 port => 15046
 codec => json_lines
 }
}
filter {
 date {
 match => ["write_time", "ISO8601"]
 }
}
output {
 elasticsearch {
 id => "elasticsearch"
 hosts => ["elasticsearch:9200"]
 index => "omegamon-%{product_code}-%{table_name}-ds"
 action => "create"
 manage_template => false
 }
}

Figure 14. Logstash pipeline configuration to ingest JSON Lines over TCP from OMEGAMON Data Connect

Set the port on which Logstash listens for input to match the connect.output.tcp.port
configuration parameter of OMEGAMON Data Connect.

Set the index option to match your site practices for Elasticsearch index names.

This example sets the action option to create, for use with data streams.

Integrating Splunk with OMEGAMON Data Provider
To integrate Splunk with OMEGAMON Data Provider, you can configure the OMEGAMON Data Connect
component of OMEGAMON Data Provider to send attributes as JSON Lines to a Splunk TCP input.
Related reference
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.

Basic Splunk configuration for OMEGAMON Data Provider
To ingest JSON Lines from OMEGAMON Data Connect into Splunk, you need to define a Splunk source
type that breaks each input line into a separate event, identifies the data format as JSON, and recognizes
timestamps. To ingest the data over TCP, you need to define a Splunk TCP input that refers to that source
type.

The following Splunk configuration stanzas define a minimal basic configuration for ingesting JSON Lines
over TCP from OMEGAMON Data Connect: one stanza in props.conf, and one in inputs.conf.

Depending on your own site practices, you might perform additional configuration, such as assigning
different source types, routing events to different indexes, or using secure TCP (TLS).

Location of Splunk configuration stanzas
This OMEGAMON Data Provider documentation refers to Splunk configuration (.conf) file names, but not
directory paths. It is your decision where to store the Splunk configuration stanzas for OMEGAMON Data
Provider.

For example, you might choose to create a Splunk application directory named your-organization-
omegamon specifically for OMEGAMON Data Provider, and save the configuration files there:

$SPLUNK_HOME/etc/apps/your-organization-omegamon/local/*.conf

Getting started with OMEGAMON Data Provider 31

props.conf
The following stanza in props.conf defines the properties of an "omegamon" source type:

[omegamon]
SHOULD_LINEMERGE = false
KV_MODE = json
TIME_PREFIX = \"write_time\":\"
TIME_FORMAT = %Y-%m-%dT%H:%M:%S.%6N%:z

The combination of SHOULD_LINEMERGE = false and KV_MODE = json defines the incoming data as
JSON Lines: one event per line, data in JSON format. These two settings apply to different stages in the
Splunk data pipeline: SHOULD_LINEMERGE applies to parsing, before indexing; KV_MODE applies later, to
search-time field extraction.

The regular expression for TIME_PREFIX is case sensitive; it matches the lowercase field name
write_time, which is the field name for event timestamps in JSON from OMEGAMON Data Connect.

The value of TIME_FORMAT matches the format of timestamps in JSON from OMEGAMON Data Connect:
ISO 8601 date and time of day representation extended format with a zone designator.

inputs.conf
The following stanza in inputs.conf defines an unsecure TCP input that listens on port 5046, assigns
the source type "omegamon" to all incoming events, and stores the events in the default index (typically,
main):

[tcp://:5046]
sourcetype = omegamon

The port number and source type shown here are examples only. The actual values are your choice.

If you have a file of JSON Lines from OMEGAMON Data Connect, then you don't need to define a TCP
input. Instead, you can use the Splunk Web Add Data > Upload option to ingest the file directly from your
computer. If you use that technique, remember to select the "omegamon" source type, so that Splunk
correctly interprets the file contents.

Tip: In the Source type dropdown list on the Set Source Type page, the "omegamon" source type will
appear under the heading "Uncategorized".

Setting source type per-event based on table name
Rather than assigning the same source type to all events from OMEGAMON Data Connect, you might
prefer more granularity; more source types. The method presented here sets the source type per-event
based on the value of the JSON key table_name.

You can use transforms in Splunk to override the source type per event.

Each line of JSON Lines from OMEGAMON Data Connect contains a table_name field that identifies the
OMEGAMON attribute table too which the data belongs. You can use this field to set the Splunk source
type.

Depending on your own site practices, you might perform additional configuration, such as assigning
different source types, routing events to different indexes, or using secure TCP.

For example, in props.conf, append the following line to the stanza for the corresponding source type
or input:

TRANSFORMS-changesourcetype = set_sourcetype_omegamon

32 IBM Z OMEGAMON Data Provider: Installation and User's Guide

and add the following stanza to transforms.conf:

[set_sourcetype_omegamon]
Set sourcetype to value of table_name field
REGEX = \"table_name\":\"([^\"]+)\"
FORMAT = sourcetype::omegamon_$1
DEST_KEY = MetaData:Sourcetype

Starting OMEGAMON Data Provider
Starting OMEGAMON Data Provider involves starting the related components: OMEGAMON Data Connect,
OMEGAMON Data Broker, and the OMEGAMON runtime environment that collects attributes.

You should have already configured and started an analytics platform, such as the Elastic Stack, or an
application or tool to listen for JSON Lines over TCP from OMEGAMON Data Connect. You should have
tested that software, and confirmed that it successfully receives JSON Lines on that TCP port. That
software should be actively listening now.

You should have already tested that your OMEGAMON runtime environment collects attributes in the
persistent data store without OMEGAMON Data Provider. This confirms that you have successfully
configured historical data collection; this is a prerequisite for using OMEGAMON Data Provider.

You can start the components in any order. You don't need to ensure that any components are stopped
before you begin. However, the behavior of components and the messages that they issue can depend on
the order in which you start them.

The following procedure assumes that the following components are stopped, inactive:

• OMEGAMON Data Connect.
• OMEGAMON Data Broker.

If you have configured an existing instance of the Zowe cross-memory server to run OMEGAMON Data
Broker, that's okay; there's no need to stop it. We'll restart it in the following procedure.

For the purpose of describing a set of expected messages, to help new users, the following procedure
starts OMEGAMON components in order from "downstream" to "upstream":

1. OMEGAMON Data Connect
2. OMEGAMON Data Broker
3. Runtime environment

After starting each component, the procedure includes steps to check for expected messages before
starting the next component.

If you decide to start the components in a different order, that's okay. Just be aware that the messages
issued might differ from the messages described in the following procedure.

1. Start OMEGAMON Data Connect.

• If you have chosen to run OMEGAMON Data Connect on z/OS, here is an example z/OS MVS START
system command that you can enter to start the OMEGAMON Data Connect started task:

S KAYCONN

• If you have chosen to run OMEGAMON Data Connect off z/OS, use your platform-specific method to
start the OMEGAMON Data Connect Java application.

2. Check the KAYC-prefix messages in the STDOUT output file from OMEGAMON Data Connect.

You should see several KAYC-prefix messages, including, not necessarily in this order:

KAYC0023I Starting TCP input service listening on host:port
…
KAYC0011I Connected to host:port

Getting started with OMEGAMON Data Provider 33

KAYC0023I indicates that OMEGAMON Data Connect is listening on a TCP port for data from
OMEGAMON Data Broker.

KAYC0011I indicates that OMEGAMON Data Connect has successfully connected to an analytics
platform or application that is listening for data on a TCP port.

3. Start the Zowe cross-memory server that runs OMEGAMON Data Broker. If you are using an existing
server, stop and then restart the server.

Example MVS command to start the corresponding started task:

S ZWESIS01,REUSASID=YES

Zowe cross-memory server supports reusable address spaces and can be started with the
REUSASID=YES parameter.

4. Check the KAYB-prefix messages in the SYSPRINT output data set of the Zowe cross-memory server
job.

You should see several KAYB-prefix messages, including:

KAYB0036I Store 'OMEGAMON' has connected to sink host:port

Message KAYB0036I indicates that OMEGAMON Data Broker has connected to the TCP port on which
OMEGAMON Data Connect is listening.

5. Start the OMEGAMON runtime environment, if it is not already running.
Use your site-specific procedures to start the runtime environment jobs.

6. Check the KPQH-prefix messages in the RKLVLOG output data set of the monitoring agent jobs.

Note: The z/OS and storage monitoring agents run in the same address space as the monitoring server
(default job name: OMEGDS).

You should see several KPQH-prefix messages, including:

KPQH038I KPQHSMGR: TABLE product.table_name HAS BEEN CONNECTED TO BROKER

Message KPQH038I indicates the first time that the collection task sends data for this table to
OMEGAMON Data Broker. The timing of this message depends on the collection interval for the table.

7. Check again the KAY-prefix messages in the STDOUT output file from OMEGAMON Data Connect.

You should see new KAYC-prefix messages:

KAYC0008I Creating mapping class for table table_name
KAYC0033I Table table_name received from origin_type origin_name

KAYC0008I indicates the first time, either since starting or since its configuration was refreshed by a
MODIFY command, that this instance of OMEGAMON Data Connect has received data for this table.

KAYC0033I indicates the first time, either since starting or since its configuration was refreshed by
a MODIFY command, that this instance of OMEGAMON Data Connect has received data for this table
from this origin_name.

8. View the attributes in the destination analytics platform or application.
For example, view the attributes in the starter Elastic Kibana dashboards.

9. Configure and start OMEGAMON Data Provider on other z/OS LPARs.

Related reference
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If attributes are not arriving at a destination analytics platform, but there are no obvious
errors, then use these messages as a checklist to diagnose the problem.
Related information
No KPQH037I or KPQH038I message for a table

34 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Modifying running components of OMEGAMON Data
Provider

To control components of OMEGAMON Data Provider that are running on z/OS , you can use MVS system
commands, such as MODIFY.

Reloading collection configuration
After updating collection configuration parameters in the RKANPARU(KAYOPEN) member, you need to
apply the configuration changes to the affected collection tasks. To apply the changes, you can either
restart the jobs that run the collection tasks, or enter the MVS MODIFY system command presented here.

You only need to restart or modify the jobs that are affected by the changes to the KAYOPEN member. For
example, if you only edited parameters that select the collections for product name kc5, then you only
need to restart or modify the job that runs the CICS monitoring agent.

For monitoring agents that run in the monitoring server address space (TEMS), such as the z/OS and
storage agents, you need to restart or modify the TEMS job (example job name: OMEGDS).

Enter the following MODIFY command for each job:

F job_name,KPQ,RELOAD_CONFIG,KAY

To confirm the configuration changes, read the KAYL0005I messages in the RKLVLOG output data set of
the job.

Related tasks
Configuring which collections to send to OMEGAMON Data Broker
You need to specify which historical collections to send to OMEGAMON Data Broker.

Displaying OMEGAMON Data Broker status
You can enter MVS MODIFY system commands to display information about the status of OMEGAMON
Data Broker.

Issue one of the following MVS MODIFY system commands to the Zowe cross-memory server that runs
OMEGAMON Data Broker:

• To display the status of connections to OMEGAMON Data Connect:

F ZWESIS01,D(KAYB) FWD

• To display the status of stores, such as how many records OMEGAMON Data Broker has sent to
OMEGAMON Data Connect:

F ZWESIS01,D(KAYB) STORE

where:

• ZWESIS01 is the name of the Zowe cross-memory server job.
• KAYB identifies the OMEGAMON Data Broker plugin as the target of the command.

© Copyright IBM Corp. 2021, 2022 35

Restarting OMEGAMON Data Connect
If you are running OMEGAMON Data Connect on z/OS, then you can enter an MVS MODIFY system
command to restart it. Restarting OMEGAMON Data Connect reloads its configuration parameters.

Attention: Restarting OMEGAMON Data Connect flushes unsent records. Flushed records are lost,
not sent to any destination.

Enter the following MODIFY command:

F OMEGCONN,APPL=RESTART

where OMEGCONN is the name of the OMEGAMON Data Connect job.

Related reference
OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.

Stopping components on z/OS
To stop an instance of OMEGAMON Data Broker, or an instance of OMEGAMON Data Connect that is
running on z/OS, enter an MVS STOP system command.

There is no MODIFY command for this action; use the STOP command.

Enter the following STOP command:

P job_name

where job_name is the name of one of the following jobs:

• The Zowe cross-memory server job that is running OMEGAMON Data Broker
• OMEGAMON Data Connect

36 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Adding more collections to OMEGAMON Data
Provider

If you have already configured an OMEGAMON runtime environment to send collections to OMEGAMON
Data Provider, then follow the steps here to add more.

1. Edit the RKANPARU(KAYOPEN) member to select the additional collections.

Tip: Edit KAYOPEN before you create the collections. Performing the configuration in this order ensures
that attributes go to the correct destinations as soon as you create the collections.

2. Reload the collection configuration in the affected monitoring agents.
3. If necessary, update the OMEGAMON Data Connect configuration and then restart OMEGAMON Data

Connect.

Whether you need to perform this step depends on whether the current OMEGAMON Data Connect
configuration already selects the corresponding table for forwarding.

For example, if OMEGAMON Data Connect is already configured to forward all tables from a monitoring
agent, and you are adding a collection for another table from that agent, then you don't need to
perform this step.

4. Create the collections.

To create historical collections, use the OMEGAMON enhanced 3270 user interface (e3270UI) or
Tivoli Enterprise Portal (TEP). For more information about creating historical collections, see the
OMEGAMON documentation for e3270UI and TEP.

5. Check the RKLVLOG output data set of the affected monitoring agent jobs for KPQH038I messages.
6. Check the STDOUT output file from OMEGAMON Data Connect for KAYC0008I and KAYC0033I

messages.
7. Check that the attributes are arriving at your analytics platform.

For example, in Elastic, check that an index has been created for the table.

Related tasks
Configuring which collections to send to OMEGAMON Data Broker
You need to specify which historical collections to send to OMEGAMON Data Broker.
Related information
No KPQH037I or KPQH038I message for a table

© Copyright IBM Corp. 2021, 2022 37

38 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Configuration parameters
OMEGAMON Data Provider has three configuration points: collection tasks, OMEGAMON Data Broker, and
OMEGAMON Data Connect. Each point has its own configuration member containing a set of configuration
parameters.

The following figure shows the three configuration points of OMEGAMON Data Provider and their
corresponding configuration members:

RKANPARU(K OPEN)AY

Destination, by table
and collection interval:
PDS or Broker.

Host name and port on
which to send data to
Connect.

Input details, such as
which port to listen on.
Output method details.
Which attributes to send.

PARMLIB(ZWESIP)xx config/connect.yaml

OMEGAMON Data Broker OMEGAMON Data Connect

Persistent
data store

attributes

Collection task

OMEGAMON
runtime environment

Figure 15. OMEGAMON Data Provider configuration points: Collection, Broker, Connect

Table 5. OMEGAMON Data Provider configuration points, configuration members, and sample members

Configuration point Configuration member Sample member

Collection task RKANPARU(KAYOPEN) in your
runtime environment

TKANSAM(KAYOPEN)

OMEGAMON Data Broker PARMLIB(ZWESIPxx) TKANSAM(KAYBRP00)

OMEGAMON Data Connect config/connect.yaml in the
OMEGAMON Data Connect
installation directory

config/connect*.yaml

None of these configuration members is managed by PARMGEN or Monitoring Configuration Manager.

© Copyright IBM Corp. 2021, 2022 39

OMEGAMON Data Provider collection configuration parameters
Collection tasks use OMEGAMON Data Provider collection configuration parameters to select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.

OMEGAMON
Data BrokerCollection tasks

Persistent
data store

attributes

z/OS

Figure 16. OMEGAMON Data Provider collection configuration parameters control where attributes are sent

Selecting versus creating collections
These parameters select collections; they do not create collections.

Historical collections are a prerequisite for using OMEGAMON Data Provider.

To create historical collections, use the OMEGAMON enhanced 3270 user interface (e3270UI) or Tivoli
Enterprise Portal (TEP). For more information about creating historical collections, see the OMEGAMON
documentation for e3270UI and TEP.

Tip: You can specify these parameters to select collections before you create the corresponding
collections. Configuring these parameters first means that, when you create the collections, collection
tasks immediately send the attributes to the appropriate destinations.

Format

broker:
 name: string
collections:
 - product: kpp # Product code (example: km5)
 table: table_name
 interval: minutes # 0 matches any interval
 destination: # Either or both
 - pds
 - open
 - ... # More collections

The OMEGAMON Data Provider collection configuration member is a YAML document. The configuration
parameters and their values conform to YAML syntax.

Tip: Use a YAML validator to check that your configuration file conforms to YAML syntax.

Parameter names and values are case-insensitive, with one exception: the broker name is case-sensitive.

Character encoding
Collection tasks use EBCDIC code page 1047 to interpret the characters of the configuration member.

The code page is significant only if you use characters outside of the "invariant subset" of EBCDIC;
characters that have different byte values in different EBCDIC code pages. For example, square brackets
([]) have different byte values in EBCDIC code pages 037 and 1047.

40 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://yaml.org/

If you do use such characters, then when you edit the configuration member on z/OS, ensure that
your terminal code page is set to EBCDIC code page 1047. For example, in your terminal emulator
settings. Otherwise, you risk introducing byte values that your terminal displays as one character but that
represents a different character when interpreted using EBCDIC code page 1047.

Tip: To avoid such code page issues, only use characters in the invariant subset of EBCDIC. In particular,
do not use square brackets.

To avoid square brackets in YAML, use the block sequence YAML syntax shown in this documentation, not
flow sequences. Block sequences are delimited by newlines and hyphens, whereas flow sequences are
enclosed in square brackets.

Location
This configuration member is optional. If you omit it, then OMEGAMON Data Provider is dormant and
attributes from historical collections are sent to PDS only.

If you choose to specify a configuration member, then it must be member name KAYOPEN in the
RKANPARU library of your OMEGAMON runtime environment (RTE).

Attention: Do not maintain your primary copy of the KAYOPEN member in the RKANPARU library.
Maintain it in a different location of your choice, and copy it from that location into RKANPARU.
PARMGEN and Monitoring Configuration Manager do not manage the KAYOPEN member. Some
actions of PARMGEN and Monitoring Configuration Manager, such as the GENERATE action of
Monitoring Configuration Manager, delete existing members of the RKANPARU library of an RTE.
Each time you perform such an action, you must copy the KAYOPEN member into the RKANPARU
library.

Parameter descriptions
broker

Contains a single child key:
name

The name of the Zowe cross-memory server that runs the OMEGAMON Data Provider to which you
want to send data.

This name is the value of the NAME runtime parameter of the JCL EXEC statement for the
ZWESIS01 program (corresponding default procedure and job name: ZWESIS01).

Typical value: ZWESIS_STD

collections
Specifies a block sequence of historical collections. Each entry in the sequence is marked by a dash
and space.

Each entry selects a historical collection that you have created in OMEGAMON and specifies
destinations for that collection.

Each entry uses a combination of three values to select a historical collection: product code, table
name, and collection interval.

To send data from a collection to OMEGAMON Data Broker, you must select the collection and specify
the destination open.

product
The 3-character kpp product code of the monitoring agent that owns the table.

table
The table name. For example, ascpuutil (Address Space CPU Utilization).

interval
The collection interval in minutes or the special value 0 (zero).

The value 0 acts as a wildcard; it selects all historical collections for the table, regardless of
collection interval.

Configuration parameters 41

Examples of minute values:

1
Every minute

5
Every 5 minutes

15
Every 15 minutes

30
Every 30 minutes

60
Every hour

1440
Once per day

To select a collection, either specify the wildcard value 0 or the number of minutes that matches
the specific collection interval.

For example, to select a collection that has a collection interval of 1 day, specify interval:
1440.

Specifying interval: 0 offers flexibility: it means that you can change the collection interval
of a collection without having to specify that different interval value here and then restart or
modify running OMEGAMON monitoring agents.

If you have multiple collections for the same table, but with different collection intervals, then
you can choose to send them all to the same destinations with a single entry that specifies
interval: 0, or you can specify multiple entries with specific collection intervals.

destination
Specifies a sequence of destinations for the table.

The sequence can contain either or both of the following values:

open
Send data from this collection to OMEGAMON Data Broker.

pds
Send data from this collection to the persistent data store.

If you want to view attributes from this collection in the OMEGAMON enhanced 3270 user
interface (e3270UI) or the Tivoli Enterprise Portal (TEP) user interface, or store the attributes
in Tivoli Data Warehouse, then you must include pds as a destination.

To pass attributes directly through to OMEGAMON Data Broker without storing them on disk (in
the PDS), specify open as the only destination.

For an overview of this choice of destinations, see “Attribute destinations” on page 10.

You can specify destinations either in a block sequence, delimited by line breaks and hyphens:

destination:
 - open
 - pds

or in a flow sequence, delimited by commas and wrapped in square brackets:

destination: [open, pds]

42 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Precedence of entries that select the same collections
If more than one entry in the collections sequence specifies the same combination of product name,
table name, and collection interval, then the last entry takes precedence. That is, collections will be sent
to the destinations specified by the last entry.

Entries with a specific interval value take precedence over entries with the wildcard interval value of 0.

Default destinations of unselected collections
The following conditions determine the default destination for collections that are not selected by any of
the entries in the collections sequence:

Condition Destination

No entries select that combination of product code
and table name.

PDS only.

One or more entries select that combination of
product code and table name, but none of those
entries select that collection interval.

None.

The collection is discarded. Data from that
collection is not sent to either the PDS or
OMEGAMON Data Broker.

Applying configuration changes
After editing this configuration member, you need to apply changes to the jobs that run the affected
OMEGAMON monitoring agents.

You must either restart the jobs or enter an MVS MODIFY system command to reload their collection
configuration.

Example: All collection intervals to both destinations

The following example selects collections for two tables; both tables are from the z/OS monitoring agent,
product code km5.

broker:
 name: ZWESIS_STD
collections:
 - product: km5
 table: ascpuutil
 interval: 0
 destination:
 - open
 - pds
 - product: km5
 table: km5msucap
 interval: 0
 destination:
 - open
 - pds

This example selects all collections for these tables, regardless of collection interval.

This example sends all selected collections to both the PDS and OMEGAMON Data Broker.

Collections for all other tables are sent to PDS only.

A similar example set of parameters is supplied in the KAYOPEN member of the TKANSAM sample library.

Configuration parameters 43

Example: Specific collection intervals

The following example only selects collections with the cited collection intervals.

broker:
 name: ZWESIS_STD
collections:
 - product: km5
 table: ascpuutil
 interval: 1
 destination:
 - open
 - pds
 - product: km5
 table: km5msucap
 interval: 5
 destination:
 - open
 - pds

For table ascpuutil, this example only selects a collection that has a collection interval of 1 minute.

For table km5msucap, this example only selects a collection that has a collection interval of 5 minutes.

Collections for tables ascpuutil and km5msucap with other collection intervals are discarded.

Collections for all other tables are sent to PDS only.

Example: Multiple specific collection intervals

The following example sends collections for the same table, but with different collection intervals, to
different destinations.

broker:
 name: ZWESIS_STD
collections:
 - product: km5
 table: ascpuutil
 interval: 1
 destination:
 - open
 - product: km5
 table: ascpuutil
 interval: 5
 destination:
 - pds

A collection for table ascpuutil with a collection interval of 1 minute is sent to OMEGAMON Data Broker
only.

A collection for table ascpuutil with a collection interval of 5 minutes is sent to the PDS only.

Collections for table ascpuutil with other collection intervals are discarded.

Collections for all other tables are sent to PDS only.

Example: Combination of wildcard and specific collection intervals

The following example sends all collections for CICS (kc5) table kcpplx to the PDS; it also sends a
collection for that table with a collection interval of 1 minute to OMEGAMON Data Broker.

broker:
 name: ZWESIS_STD
collections:
 - product: kc5

44 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 table: kcpplx
 interval: 0
 destination:
 - pds
 - product: kc5
 table: kcpplx
 interval: 1 # Specific value takes precedence over wildcard (0)
 destination:
 - pds
 - open

The following similar example sends all collections for table kcpplx to OMEGAMON Data Broker; it also
sends a collection for that table with a collection interval of 1 minute to the PDS.

broker:
 name: ZWESIS_STD
collections:
 - product: kc5
 table: kcpplx
 interval: 0
 destination:
 - open # This line is the only difference from the previous example
 - product: kc5
 table: kcpplx
 interval: 1 # Specific value takes precedence over wildcard (0)
 destination:
 - pds
 - open

Related concepts
Attribute destinations
OMEGAMON Data Provider introduces a choice of destination for attributes: the OMEGAMON persistent
data store (PDS), OMEGAMON Data Provider, or both.
Related tasks
Configuring which collections to send to OMEGAMON Data Broker
You need to specify which historical collections to send to OMEGAMON Data Broker.
Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
Related information
No KPQH037I or KPQH038I message for a table

OMEGAMON Data Broker configuration parameters
OMEGAMON Data Broker configuration parameters include the host name and port on which OMEGAMON
Data Connect is listening.

In the context of the TCP connection between OMEGAMON Data Broker and OMEGAMON Data Connect,
OMEGAMON Data Broker is the client and OMEGAMON Data Connect is the server.

Configuration parameters 45

Zowe
cross-memory server

OMEGAMON
Data Broker

OMEGAMON
Data Connect

OMEGAMON
collection tasks

z/OS On or off z/OS

TLS/TCP

TCP
ServerClientForwarder

Store
Cells Source:

Origin of data for the forwarder

Sink:
Forwarder destination

Figure 17. OMEGAMON Data Broker configuration points: store, forwarder, and output ("sink")

OMEGAMON Data Broker receives attributes from collection tasks into an internal store, and then
forwards the attributes to OMEGAMON Data Connect.

To forward attributes to OMEGAMON Data Connect, you configure a forwarder with the store as its source
and OMEGAMON Data Connect as its sink.

You can configure one or more forwarders. Each forwarder uses the same store as its source but sends
data to a different sink; a different instance of OMEGAMON Data Connect:

OMEGAMON
Data Broker

OMEGAMON
Data Connect

OMEGAMON
Data Connect

OMEGAMON
Data Connect

Forwarder 1

Forwarder 2

Forwarder

Store

n

OMEGAMON
collection tasks

Figure 18. OMEGAMON Data Broker configuration: one store, one or more forwarders

Format

* General parameters
* Register the OMEGAMON Data Broker plugin (load module)
ZWES.PLUGIN.CIDB=KAYB0001
* Enable the forwarder subsystem
KAY.CIDB.FWD=ON

* Forwarder parameters

46 IBM Z OMEGAMON Data Provider: Installation and User's Guide

KAY.CIDB.FWD.forwarder_id.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.forwarder_id.SINK_HOST=connect_host_name
KAY.CIDB.FWD.forwarder_id.SINK_PORT=connect_port
* Optional timeout and retry parameters
KAY.CIDB.FWD.forwarder_id.CONNECT_TIMEOUT=seconds
KAY.CIDB.FWD.forwarder_id.RECEIVE_TIMEOUT=seconds
KAY.CIDB.FWD.forwarder_id.SEND_TIMEOUT=seconds
KAY.CIDB.FWD.forwarder_id.CONNECT_RETRY_INTERVAL=seconds
KAY.CIDB.FWD.forwarder_id.MAX_CONNECT_RETRY_ATTEMPTS=number
* Other optional parameters
KAY.CIDB.FWD.forwarder_id.RECORD_QUEUE_LIMIT=records
KAY.CIDB.FWD.forwarder_id.LOGOPTS=--verbosity log_level
* SSL parameters: only required if sink connection uses SSL/TLS
KAY.CIDB.FWD.forwarder_id.SECURITY=TLSv1.2
KAY.CIDB.FWD.forwarder_id.FIPS=ON|OFF
KAY.CIDB.FWD.forwarder_id.KEYRING=string
KAY.CIDB.FWD.forwarder_id.STASH=string
KAY.CIDB.FWD.forwarder_id.PASSWORD=string
KAY.CIDB.FWD.forwarder_id.CIPHERS=string
KAY.CIDB.FWD.forwarder_id.CERTLABEL=string

* Optional: More forwarders...

* Store parameters
KAY.CIDB.STORE.store_id.NAME=OMEGAMON
* As a starting point, use the cell definitions in
* sample member TKANSAM(KAYBRP00)
KAY.CIDB.STORE.store_id.CELL.cell_id.SIZE=bytes
KAY.CIDB.STORE.store_id.CELL.cell_id.CAPACITY=number
* More OMEGAMON store cell definitions...

OMEGAMON Data Broker configuration parameter names are case-sensitive.

Location
OMEGAMON Data Broker configuration parameters are stored in the configuration member of the Zowe
cross-memory server, PARMLIB(ZWESIPxx).

A configuration member named ZWESIPxx must exist in one of the following data sets:

• The data set specified by the PARMLIB ddname of the job step that runs the Zowe cross-memory server
program, ZWESIS01.

• If that job step does not specify a PARMLIB ddname, the system PARMLIB. For example,
SYS1.PARMLIB.

The last two characters of the configuration member name are determined by the optional MEM runtime
parameter of the Zowe cross-memory server. The following example uses the configuration member
ZWESIP02:

//ZWESIS01 PROC NAME='ZWESIS_STD',MEM=02,RGN=0M

The default value of MEM is 00. If you omit the MEM runtime parameter, the program uses configuration
member ZWESIP00.

Parameter namespaces and IDs
OMEGAMON Data Broker configuration parameters are namespaced. Each parameter name is prefixed by
a sequence of period-delimited qualifiers that specify the context of the parameter.

For example, in the following parameter name:

KAY.CIDB.FWD.forwarder_id.SINK_HOST

Configuration parameters 47

• KAY.CIDB specifies that the parameter belongs to the OMEGAMON Data Broker component of
OMEGAMON Data Provider.

• FWD specifies that the parameter belongs to a forwarder.
• forwarder_id specifies which forwarder the parameter belongs to.

A parameter namespace can include one or more IDs, such as forwarder_id, store_id, or cell_id.

An ID specifies an instance of an object and groups the parameters for that object. The qualifier preceding
the ID specifies the object type, such as forwarder (FWD), store (STORE), or cell (CELL). Objects of the
same type must use different IDs.

An ID is a case-sensitive string of 1 - 8 alphanumeric characters (a - z, A - Z, 0 - 9).

Example IDs:

OM
1
2
A
B

Note: A forwarder and a store can use the same ID, such as OM, but this does not imply any relationship
between them. Each forwarder specifies the name of the store to use as its source.

No other Zowe cross-memory server configuration parameters required
If you use the Zowe cross-memory server only to host OMEGAMON Data Broker, then the Zowe cross-
memory server configuration member, PARMLIB(ZWESIPxx), can contain only the following parameters:

• ZWES.PLUGIN.CIDB=KAYB0001, to register the OMEGAMON Data Broker plugin.
• KAY.CIDB-namespace OMEGAMON Data Broker configuration parameters described here.

You do not need to specify any other ZWES-namespace parameters for the Zowe cross-memory server
itself.

Splitting long parameter values over multiple lines
Some parameters in the KAY.CIDB.FWD namespace can have long values.

However, each record of the Zowe cross-memory server configuration member can contain a maximum of
only 71 characters.

To split long values of KAY.CIDB.FWD-namespace parameters over multiple lines, use a backslash (\) as
a line continuation character. Example:

KAY.CIDB.FWD.OM.KEYRING=\
 /u/my/long/directory/path/to/\
 a-long-file-name.p12

Leading spaces on continuation lines are ignored.

Use the sample configuration member
As a starting point, use sample configuration member TKANSAM(KAYBRP00).

For a connection without Transport Security Layer (TLS), you only need to change the values of two
parameters in that sample member:

KAY.CIDB.FWD.OM.SINK_HOST
KAY.CIDB.FWD.OM.SINK_PORT

48 IBM Z OMEGAMON Data Provider: Installation and User's Guide

General parameters
The following general parameters are required:

ZWES.PLUGIN.CIDB=KAYB0001
Identifies the member name of the OMEGAMON Data Broker load module.

OMEGAMON Data Broker is a Zowe cross-memory server plugin.

The OMEGAMON Data Broker load module KAYB0001 must be a member of the data set specified by
the STEPLIB ddname of the job step that runs the Zowe cross-memory server program, ZWESIS01.

KAY.CIDB.FWD=ON
Enables the forwarder subsystem of OMEGAMON Data Broker. The forwarder enables OMEGAMON
Data Broker to send data over a TCP/IP network to a "sink" (forwarding destination) such as
OMEGAMON Data Connect.

Values:

ON
Enables the forwarder. This value is case-sensitive.

If you omit this parameter, or specify any value other than ON in all uppercase, then the forwarder
subsystem is disabled, and OMEGAMON Data Broker will not forward data.

Forwarder parameters
You can define one or more forwarders. Use a different forwarder_id to group the parameters for each
forwarder.

The following parameters are required:

KAY.CIDB.FWD.forwarder_id.SOURCE_STORE=OMEGAMON
The name of the OMEGAMON Data Broker store to which OMEGAMON collection tasks sends data.

For OMEGAMON Data Provider, you must specify the store name OMEGAMON.

KAY.CIDB.FWD.forwarder_id.SINK_HOST=connect_host_name
Host name or IP address of the OMEGAMON Data Connect instance that is listening for data from
OMEGAMON Data Broker.

In the context of the OMEGAMON Data Broker forwarder, OMEGAMON Data Connect is a sink: a
destination.

If you plan to run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data Broker,
then you can specify the value localhost or the local loopback IP address. The typical local
loopback IPv4 address is 127.0.0.1.

KAY.CIDB.FWD.forwarder_id.SINK_PORT=connect_port
The port on which OMEGAMON Data Connect is listening. Follow your site-specific standards for
assigning port numbers.

The following parameters are optional:

KAY.CIDB.FWD.forwarder_id.CONNECT_TIMEOUT=seconds
Time in seconds to wait to establish a connection to OMEGAMON Data Connect. Default: 5.

KAY.CIDB.FWD.forwarder_id.RECEIVE_TIMEOUT=seconds
Receive timeout in seconds. Default: 5.

KAY.CIDB.FWD.forwarder_id.SEND_TIMEOUT=seconds
Send timeout in seconds. Default: 0 (indefinite).

KAY.CIDB.FWD.forwarder_id.CONNECT_RETRY_INTERVAL=seconds
Number of seconds to wait before retrying connection to OMEGAMON Data Connect. Default: 20.

KAY.CIDB.FWD.forwarder_id.MAX_CONNECT_RETRY_ATTEMPTS=number
Maximum number of attempts to retry connection to OMEGAMON Data Connect. Default: no value;
unlimited.

Configuration parameters 49

The following optional parameters are deliberately omitted from the sample member, because their
default values are typically suitable:

KAY.CIDB.FWD.forwarder_id.RECORD_QUEUE_LIMIT=records
The maximum number of records allowed in this forwarder's queue. The default value is 1000000
(one million) records.

If the queue reaches this limit, then it stops expanding and becomes circular, fixed-length: each new
record overwrites the oldest record. If the queue length later decreases, it reverts to adding instead of
overwriting records.

If OMEGAMON Data Connect is unavailable, or is unable to receive data at the rate that OMEGAMON
Data Broker receives data, then, potentially, older records in the queue might be lost; overwritten by
new records before they can be forwarded.

KAY.CIDB.FWD.forwarder_id.LOGOPTS=--verbosity log_level
The logging level of activity for this forwarder. The default value is 0.

Typically, you only need to set this value if IBM Software Support requests you to do so for
troubleshooting.

Allowed values:

log_level Description Notes

0 None Default value

1 Fatal Only log fatal errors

2 Error Log all errors

3 Warning Log any warnings

4 Info Log informational messages

5 Verbose Log verbose informational messages

6 Debug Log messages useful for debugging

7 Trace Log low-level trace messages

8 All Log all messages

Example:

KAY.CIDB.FWD.OM.LOGOPTS=--verbosity 7

Higher logging levels include all messages from lower levels. For example, level 4 (info) includes all
warnings and errors.

The details in messages at levels 6 and higher are intended for use only by IBM Software Support.

Forwarder SSL parameters
The following parameters are relevant only if you use TLS to secure the connection between OMEGAMON
Data Broker and OMEGAMON Data Connect:

KAY.CIDB.FWD.forwarder_id.SECURITY=string
Enabled security protocols. Allowed values: TLSv1.2 or blank (no value). Default: no value; no
security protocol.

Tip: For a connection without TLS, omit or comment-out this parameter.

50 IBM Z OMEGAMON Data Provider: Installation and User's Guide

KAY.CIDB.FWD.forwarder_id.FIPS=ON|OFF
Sets z/OS System SSL Federal Information Processing Standards (FIPS) mode. Default: OFF. For
information about FIPS mode, see the z/OS System SSL documentation for your version of z/OS. For
example, FIPS 140-2 support in z/OS 2.5.0.

KAY.CIDB.FWD.forwarder_id.KEYRING=string
Identifies the collection of security certificates required for this connection. Can be one of the
following values:
SAF key ring

Specified in the format owner_user_id/key_ring_name. For example:

my/kay_keyring

If the current user owns the key ring, the current user must have READ access to the
IRR.DIGTCERT.LISTRING resource in the FACILITY class. If another user owns the key ring, the
current user must have UPDATE access to that resource.

Certificate private keys are not available when using a SAF key ring owned by another user,
except for SITE certificates where CONTROL authority is given to IRR.DIGTCERT.GENCERT
in the FACILITY class or for user certificates where READ or UPDATE authority is given to
ring_owner.ring_name.LST resource in the RDATALIB class.

Key database
A key database created by the z/OS gskkyman utility. The key database is specified as a z/OS
UNIX file path. For example:

/u/my/security/certs/kay.kdb

PKCS #12 file
Specified as a z/OS UNIX file path. For example:

/u/my/security/certs/kay.p12

PKCS #11 token
Specified in the format *TOKEN*/token_name. For example:

TOKEN/kay.pkcs11.token

The *TOKEN* qualifier indicates that the value refers to a PKCS #11 token rather than a SAF key
ring.

If you specify a key database or PKCS #12 file, but you do not specify either a STASH parameter or
a PASSWORD parameter, then OMEGAMON Data Broker looks for a stash file in the same directory as
the key database or PKCS #12 file, and with the same base file name, but with .sth extension. For
example, if the KEYRING parameter specifies the following z/OS UNIX file path:

/u/my/security/certs/kay.kdb

or:

/u/my/security/certs/kay

(with no extension)

then OMEGAMON Data Broker looks for a stash file at the following path:

/u/my/security/certs/kay.sth

KAY.CIDB.FWD.forwarder_id.STASH=path
z/OS UNIX file path of the stash file that contains the password for the key database or PKCS #12 file.

If PASSWORD is specified, STASH is ignored.

KAY.CIDB.FWD.forwarder_id.PASSWORD=string
Password for the key database or PKCS #12 file.

Configuration parameters 51

https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-system-ssl-fips-140-2

If KEYRING specifies a SAF key ring or PKCS #11 token, PASSWORD is ignored.

KAY.CIDB.FWD.forwarder_id.CIPHERS=hex_string
List of candidate cipher suites to try, in order. The list is a concatenation of 4-digit hexadecimal cipher
suite numbers supported by z/OS System SSL. For example:

000A000D001000130016

If you omit CIPHERS, OMEGAMON Data Broker uses the system default list of cipher suites. That list
depends on whether FIPS mode is on.

Tip: To match a z/OS System SSL cipher suite number to the corresponding OpenSSL cipher suite
name, go to the z/OS System SSL documentation and look up the "short name" for that cipher suite
in the table of cipher suite definitions. The short name is the name that is defined in the associated
Request for Comments (RFC) by the Internet Engineering Task Force (IETF). Then go to the OpenSSL
documentation for the ciphers command, and use the RFC name to find the corresponding OpenSSL
name.

For more information on cipher suite definitions, see the z/OS System SSL documentation for your
version of z/OS. For example, the cipher suite definitions supported by z/OS 2.5.0.

KAY.CIDB.FWD.forwarder_id.CERTLABEL=string
Specifies the label (also known as alias) of the client certificate that is used to authenticate
OMEGAMON Data Broker (the client) to OMEGAMON Data Connect (server). The client certificate,
and its private key, must be in the collection that is specified by the KEYRING parameter.

CERTLABEL is only used if OMEGAMON Data Connect requires client authentication.

If OMEGAMON Data Connect requires client authentication, but you omit CERTLABEL, then
OMEGAMON Data Broker uses the default certificate from the collection that is specified by the
KEYRING parameter.

Store parameters
Typically, you do not need to understand store parameters in detail. Unless you have a specific reason to
use different values, use the values supplied in sample member TKANSAM(KAYBRP00).

Tip: You only need to specify one set of store parameters, regardless of the number of forwarders.

OMEGAMON Data Broker places each incoming record into a cell in a store. Cells can be various sizes.
Store parameters specify the different sizes of cell in the store and the initial number of cells of each size.

The following parameters are required:

KAY.CIDB.STORE.store_id.NAME=OMEGAMON
Defines a store named OMEGAMON.

For OMEGAMON Data Provider, you must specify the store name OMEGAMON.

KAY.CIDB.STORE.store_id.CELL.cell_id.SIZE=bytes
Cell size, in bytes.

The cell_id groups the parameters for this cell size.

KAY.CIDB.STORE.store_id.CELL.cell_id.CAPACITY=number
The initial number of cells of this cell_id; this size.

OMEGAMON Data Broker uses this value to preallocate memory for cells. During processing,
OMEGAMON Data Broker allocates additional memory as required.

KAY.CIDB.STORE.store_id.QUEUE.CAPACITY=number
The initial number of cells that the store's queues can contain. Default: 10000.

A store can have multiple forwarders. Each forwarder has its own queue. This capacity is shared
across all of the store's queues.

52 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/zos/2.5.0?topic=programming-cipher-suite-definitions

OMEGAMON Data Connect expands this capacity as required. However, while the total shared
capacity can expand, each forwarder's queue has a maximum number of records, set by the
forwarder's RECORD_QUEUE_LIMIT parameter.

Example: Forwarding to OMEGAMON Data Connect without TLS

The following example configures OMEGAMON Data Broker to send attributes to OMEGAMON Data
Connect that is running on the same z/OS instance as OMEGAMON Data Broker (localhost) and
listening on port 15351:

ZWES.PLUGIN.CIDB=KAYB0001
KAY.CIDB.FWD=ON

KAY.CIDB.FWD.OM.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.OM.SINK_HOST=localhost
KAY.CIDB.FWD.OM.SINK_PORT=15351

KAY.CIDB.STORE.OM.NAME=OMEGAMON
KAY.CIDB.STORE.OM.CELL.1.SIZE=128
KAY.CIDB.STORE.OM.CELL.1.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.2.SIZE=256
KAY.CIDB.STORE.OM.CELL.2.CAPACITY=5000
KAY.CIDB.STORE.OM.CELL.3.SIZE=512
KAY.CIDB.STORE.OM.CELL.3.CAPACITY=5000
KAY.CIDB.STORE.OM.CELL.4.SIZE=1024
KAY.CIDB.STORE.OM.CELL.4.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.5.SIZE=2048
KAY.CIDB.STORE.OM.CELL.5.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.6.SIZE=4096
KAY.CIDB.STORE.OM.CELL.6.CAPACITY=1000
KAY.CIDB.STORE.OM.CELL.7.SIZE=8192
KAY.CIDB.STORE.OM.CELL.7.CAPACITY=200

In this example, the forwarder and the store have the same ID, OM. This common value has no
significance; it does not define a relationship between the forwarder and the store. The relationship
between the forwarder and the store is defined by the forwarder SOURCE_STORE and the store NAME
parameters.

A similar example set of OMEGAMON Data Broker parameters is supplied in the sample member
TKANSAM(KAYBRP00).

Some parameter values in the previous example listing, such as CAPACITY and SIZE, might differ from
the values in the sample member. Use the values in the sample member.

Example: Forwarding to multiple instances of OMEGAMON Data Connect

To define additional forwarders, add the following parameters to the first example:

Second instance of OMEGAMON Data Connect
KAY.CIDB.FWD.OM2.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.OM2.SINK_HOST=analytics2.example.com
KAY.CIDB.FWD.OM2.SINK_PORT=15351

Third instance of OMEGAMON Data Connect
KAY.CIDB.FWD.OM3.SOURCE_STORE=OMEGAMON
KAY.CIDB.FWD.OM3.SINK_HOST=analytics3.example.com
KAY.CIDB.FWD.OM3.SINK_PORT=15351

Each forwarder has the same source store, but different FWD.forwarder_id and sink details.

Configuration parameters 53

Example: Forwarding to OMEGAMON Data Connect with TLS using a RACF key ring

Add the following parameters to the first example:

KAY.CIDB.FWD.OM.SECURITY=TLSv1.2
KAY.CIDB.FWD.OM.FIPS=ON
KAY.CIDB.FWD.OM.KEYRING=ZWESIS01/ZWESring

This example is based on the following assumptions:

• You have configured the TCP input of OMEGAMON Data Connect to use TLSv1.2.
• At least one of the FIPS cipher suites specified here by OMEGAMON Data Broker matches a cipher suite
specified by OMEGAMON Data Connect.

• You have created a RACF key ring named ZWESring, owned by user ZWESIS01 (the user that runs the
Zowe cross-memory server instance that hosts the OMEGAMON Data Broker plugin).

• The key ring contains a certificate that OMEGAMON Data Broker (the client) can use to authenticate
OMEGAMON Data Connect (the server).

• OMEGAMON Data Connect does not require client authentication.

If OMEGAMON Data Connect requires client authentication, add the following parameter:

KAY.CIDB.FWD.OM.CERTLABEL=OMDPcert

where OMDPcert is the label (alias) of the client certificate in the key ring.

Related concepts
OMEGAMON Data Provider topology
OMEGAMON Data Provider topology typically consists of one instance of OMEGAMON Data Broker per
z/OS LPAR, with multiple instances of OMEGAMON Data Broker feeding a single instance of OMEGAMON
Data Connect.
Related tasks
Configuring OMEGAMON Data Broker
OMEGAMON Data Broker is a plugin for the Zowe cross-memory server. You need to add OMEGAMON
Data Broker parameters to the Zowe cross-memory server PARMLIB member. If you plan to host

54 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Broker in a new instance of the Zowe cross-memory server, then you need to configure
the JCL procedure that runs the server.

OMEGAMON Data Connect configuration parameters
OMEGAMON Data Connect configuration parameters identify inputs, such as the TCP port on which to
listen for data from OMEGAMON Data Broker, and outputs, such as destination analytics platforms. You
can filter which attributes to output.

OMEGAMON
Data Broker

OMEGAMON
Data Connect

z/OS On or off z/OS

TCP

STDOUT

Outputs

JSON

Kafka

Prometheus

Figure 19. OMEGAMON Data Connect configuration points: input from OMEGAMON Data Broker and various
outputs

Format
The OMEGAMON Data Connect configuration file, connect.yaml, is a YAML document. OMEGAMON Data
Connect configuration parameters and their values conform to YAML syntax.

Here is the high-level structure of the document. Lower-level structures are indicated by placeholder
labels inside angle brackets (< >):

connect:
 input:
 tcp: # Required
 <TCP input parameters>

 output: # At least one output is required
 tcp:
 <TCP output parameters>

 kafka:
 <Kafka output parameters>

 prometheus:
 <Prometheus output parameters>

 stdout:
 <STDOUT output parameters>

 filter: # Optional
 <Global-level filter for JSON outputs>

Configuration parameters 55

https://yaml.org/

 event-publisher: # Optional
 <Event publisher parameters>

server: # Optional
 <Server parameters>

logging: # Optional
 <Logging parameters>

Tip: Use a YAML validator to check that your configuration file conforms to YAML syntax.

Character encoding
The configuration file must be encoded in UTF-8.

If the file is not valid UTF-8, then OMEGAMON Data Connect reports the error
java.nio.charset.MalformedInputException and stops.

Location
By default, OMEGAMON Data Connect configuration parameters are stored in the config/
connect.yaml file in the OMEGAMON Data Connect installation directory.

Tip: To avoid service updates overwriting your edited version of this file, consider setting
spring.config.additional-location in the OMEGAMON Data Connect startup procedure or script
to a file path outside of the OMEGAMON Data Connect installation directory.

Dot notation for YAML parameters
Some references to YAML configuration parameters use dot notation as a concise method for indicating
the parameter hierarchy. Dot notation is not for direct use in the YAML document.

For example, connect.output.prometheus.mappings represents the following YAML hierarchy:

connect:
 output:
 prometheus:
 mappings:

Parameter descriptions
connect

This is the root for parameters that are specific to OMEGAMON Data Connect:
input

OMEGAMON Data Connect supports a single input: data from OMEGAMON Data Broker over TCP.
output

A single instance of OMEGAMON Data Connect can send data to all of these outputs:
tcp

JSON Lines over TCP. You can specify multiple destinations for TCP output.
kafka

JSON published to Apache Kafka. You can publish either to a single topic, or to a separate
topic for each attribute group (table).

prometheus
Prometheus endpoint hosted by OMEGAMON Data Connect.

stdout
JSON Lines written to the stdout file.

56 IBM Z OMEGAMON Data Provider: Installation and User's Guide

filter
Filters which tables (attribute groups) and which fields (attributes) from those tables to send to
the JSON-format outputs: tcp, kafka, and stdout.

event-publisher
Controls aspects of internal OMEGAMON Data Connect processing.

server
Sets Spring Boot server properties.

logging
Sets Spring Boot logging properties.

Example: Output to JSON Lines over TCP without SSL/TLS

This example configures OMEGAMON Data Connect with the following behavior:

• Receive input from OMEGAMON Data Broker over TCP on port 15361 of the local z/OS host.
• Send output in JSON Lines format over TCP to a remote host named elastic.example.com on which

Logstash has been configured to listen on port 5046.

connect:
 input:
 tcp:
 enabled: true
 hostname: localhost
 port: 15351
 output:
 tcp:
 enabled: true
 sinks:
 logstash:
 hostname: elastic.example.com
 port: 5046

For more examples, including secure (SSL/TLS) configuration examples, see the topics on each input and
output method.

Related tasks
Configuring OMEGAMON Data Connect
OMEGAMON Data Connect is a Java application that can run on or off z/OS.
Restarting OMEGAMON Data Connect
If you are running OMEGAMON Data Connect on z/OS, then you can enter an MVS MODIFY system
command to restart it. Restarting OMEGAMON Data Connect reloads its configuration parameters.

TCP input parameters
OMEGAMON Data Connect TCP input parameters specify how OMEGAMON Data Connect listens for
attributes over a TCP network from OMEGAMON Data Broker.

OMEGAMON
Data Broker

OMEGAMON
Data Connect

z/OS On or off z/OS

TLS/TCP

TCP
ServerClient

Figure 20. OMEGAMON Data Connect configuration: TCP input

Configuration parameters 57

In the context of OMEGAMON Data Connect receiving data from OMEGAMON Data Broker, OMEGAMON
Data Connect is the server and OMEGAMON Data Broker is the client.

connect:
 input:
 tcp:
 enabled: boolean
 hostname: string
 port: number
 ssl: # Optional
 <SSL parameters>

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional. Default: false.

To enable this function, you must specify enabled: true.

Specifying enabled: false has the same effect as commenting-out the parent key of this enabled
key and all descendants of that parent key.

hostname
Host name or IP address on which the OMEGAMON Data Connect host listens for data from
OMEGAMON Data Broker.

If you run OMEGAMON Data Connect on the same z/OS instance as OMEGAMON Data Broker, then
you can specify localhost as the host name.

This value must match the OMEGAMON Data Broker parameter KAY.CIDB.FWD.OM.SINK_HOST.

port
Port on which to listen for data from OMEGAMON Data Broker.

This value must match the OMEGAMON Data Broker parameter KAY.CIDB.FWD.OM.SINK_PORT.

SSL parameters
connect.input.tcp.ssl:

enabled: boolean
ciphers: ciphers_list
client-auth: need|none|want
enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string
trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Enable SSL/TLS.
false

Disable SSL/TLS.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for disabling SSL/TLS, as an alternative to
using YAML comment syntax to comment-out all of the SSL parameters.

58 IBM Z OMEGAMON Data Provider: Installation and User's Guide

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

client-auth
Client authentication. Whether to request a client certificate from the client, and then whether to
allow the connection based on the client response.
need

Request a client certificate. Allow the connection only if the client responds with a valid certificate.
none

Do not request a client certificate. Allow the connect without client authentication.
want

Request a client certificate. If the client responds with a certificate, allow the connection only if
the certificate is valid. If the client does not respond with a certificate, allow the connection.

enabled-protocols
List of protocols to enable.

protocol
Protocol to use.

This key is optional. Default: TLS. Recommended: TLSv1.2.

key-alias
Alias of the server private key and associated server certificate in the keystore. On z/OS, the alias is
also known as the certificate label.

This key is optional. Default: the default certificate in the keystore.

key-password
Password required to access the server private key in the keystore.

This key is optional. Default: the value of key-store-password.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value password. RACF does not use this
value for authentication; this value is required only for compatibility with the JCE requirement for a
password.

key-store
Location of the keystore that contains the server certificate.

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/u/my/security/certs/certs.jks

PKCS12
Keystore file path. Example:

/u/my/security/certs/certs.p12

Configuration parameters 59

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name. Example:

safkeyring://STCOMDP/OMDPring

key-store-type
Keystore type. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore, or key ring. Only available if OMEGAMON Data
Connect is running on z/OS.

trust-store
Location of the truststore that contains trusted client certificates. See the list of example locations for
key-store.

A truststore is required only for client authentication; that is, when the value of client-auth is need
or want.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value password. RACF does not use this
value for authentication; this value is required only for compatibility with the JCE requirement for a
password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

Example: Secure connection over TLS using the same RACF key ring as both keystore and truststore

In this example:

• OMEGAMON Data Connect is running on z/OS, so it can use the JCERACFKS keystore and truststore
type, and refer to RACF key rings. Note the fixed value password for the keystore and truststore
passwords.

• OMEGAMON Data Connect requires client authentication: OMEGAMON Data Broker must provide a valid
certificate.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Certificates of trusted clients (instances of OMEGAMON Data Broker)

60 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 trust-store: safkeyring://STCOMDP/OMDPring
 trust-store-type: JCERACFKS
 trust-store-password: password
 # Server certificate
 key-store: safkeyring://STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password
 key-alias: OMDPcert

 output:
 # One or more outputs...

Example: Secure connection over TLS using PCKS12 keystore and JKS truststore

In this example:

• OMEGAMON Data Connect might be running on or off z/OS.
• OMEGAMON Data Connect requires client authentication: OMEGAMON Data Broker must provide a valid
certificate.

• OMEGAMON Data Connect uses the default certificate in the keystore.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Trusted client certificates
 trust-store: /u/my/security/certs/omdp-broker.jks
 trust-store-type: JKS
 trust-store-password: Pa$$w0rdTS
 # Server certificate
 key-store: /u/my/security/certs/omdp-connect.p12
 key-store-type: PKCS12
 key-store-password: Pa$$w0rdKS

 output:
 # One or more outputs...

TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.

OMEGAMON
Data Connect

Elastic Stack, Splunk...
TLS/TCP

TCP

Outputs

JSON

TCP
Client Server

Figure 21. OMEGAMON Data Connect configuration: TCP output

Configuration parameters 61

In the context of OMEGAMON Data Connect sending data over TCP, OMEGAMON Data Connect is the
client and the destination is the server.

connect:
 output:
 tcp:
 enabled: boolean # Default at this level: false
 sinks: # One or more sinks (destinations)
 sink_name_1: # Each sink has a unique name of your choice
 enabled: boolean # Default at this level: true
 hostname: string
 port: number
 max-connection-attempts: number # Optional
 retry-interval: seconds # Optional
 ssl: # Optional
 <SSL parameters>
 filter: # Optional output-level filter
 <Filter parameters>
 sink_name_2: # Optional additional sink
 ...

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional.

You can specify the enabled key as a child of the tcp key and as a child of each sink_name.

Defaults:

connect.output.tcp.enabled: false
connect.output.tcp.sinks.sink_name.enabled: true

Specifying enabled: false has the same effect as commenting-out the parent key of the enabled
key and all descendants of that parent key.

To enable any sinks, you must specify connect.output.tcp.enabled: true.

To disable a sink, specify connect.output.tcp.sinks.sink_name.enabled: false.

To disable all sinks, either omit connect.output.tcp.enabled or specify
connect.output.tcp.enabled: false.

sink_name_1, sink_name_2, ...
OMEGAMON Data Connect can send to multiple sinks.

Sink names are your choice. You might choose descriptive names, such as logstash and splunk.
See the examples at the end of this topic.

hostname
Destination host name or IP address on which software is listening for JSON Lines over TCP.

port
Destination port.

max-connection-attempts
Optional. Maximum number of attempts to connect to the sink. Default: no value; unlimited.

OMEGAMON Data Connect attempts to connect to the sink in two situations:

• When OMEGAMON Data Connect starts.
• When the connection is lost.

To avoid unlimited connection attempts, set a max-connection-attempts value.

retry-interval
Optional. Number of seconds to wait before retrying connection to the sink, either when attempting
initial connection at startup or when the connection is lost. Default: 20.

62 IBM Z OMEGAMON Data Provider: Installation and User's Guide

filter
Optional filter to restrict what data to send.

This output-level filter applies only to this sink, replacing any global-level filter (connect.filter).

Tip: You can specify an output-level filter for each sink
(connect.output.tcp.sinks.sink_name.filter) and a global-level filter that applies to all
JSON-format outputs (connect.filter). However, you cannot specify a filter that applies only to all
TCP outputs; there is no connect.output.tcp.filter.

SSL parameters
connect.output.tcp.ssl:

enabled: boolean
ciphers: ciphers_list
enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string
trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Enable SSL/TLS.
false

Disable SSL/TLS.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for disabling SSL/TLS, as an alternative to
using YAML comment syntax to comment-out all of the SSL parameters.

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

enabled-protocols
List of protocols to enable.

protocol
Protocol to use.

This key is optional. Default: TLS. Recommended: TLSv1.2.

key-alias
Alias of the client private key and associated client certificate in the keystore. On z/OS, also known as
the certificate label

This key is optional. Default: the default certificate in the keystore.

Configuration parameters 63

key-password
Password required to access the client private key in the keystore.

This key is optional. Default: the value of key-store-password.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value password. RACF does not use this
value for authentication; this value is required only for compatibility with the JCE requirement for a
password.

key-store
Location of the keystore that contains the client certificate.

A keystore is required only if the server requires client authentication.

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/u/my/security/certs/keystore.jks

PKCS12
Keystore file path. Example:

/u/my/security/certs/keystore.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring://owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with two (2) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name.

key-store-type
Keystore type. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore, or key ring. Only available if OMEGAMON Data
Connect is running on z/OS.

trust-store
Location of the truststore that contains trusted server certificates. See the list of example locations for
key-store.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value password. RACF does not use this
value for authentication; this value is required only for compatibility with the JCE requirement for a
password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

64 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Example: Connection without TLS

connect:
 input: # From OMEGAMON Data Broker...
 tcp:
 enabled: true
 hostname: localhost # on same z/OS instance as OMEGAMON Data Connect
 port: 15379

 output:
 tcp:
 enabled: true # Required to enable any sinks: default is false
 sinks:
 splunk:
 enabled: true # Optional: default is true
 hostname: splunk.example.com
 port: 5046

Example: Multiple destinations

connect:
 input:
 tcp:
 enabled: true
 hostname: localhost
 port: 15379

 output:
 tcp:
 enabled: true
 sinks:
 logstash1: # Descriptive sink name
 hostname: elastic1.example.com
 port: 5046
 logstash2:
 hostname: elastic2.example.com
 port: 5046
 splunk:
 hostname: splunk.example.com
 port: 5047

Example: Secure connection over TLS with client authentication, using the same RACF key ring as
both keystore and truststore

In this example:

• OMEGAMON Data Connect is running on z/OS, so it can use the JCERACFKS keystore and truststore
type, and refer to RACF key rings.

• The destination server, Logstash, requires client authentication, so the SSL parameters here include
client certificate details: the keystore and key alias (in RACF terms, the certificate label).

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 tcp:
 enabled: true
 sinks:

Configuration parameters 65

 logstash:
 hostname: elastic.example.com
 port: 5046
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 trust-store: safkeyring://STCOMDP/OMDPring
 trust-store-type: JCERACFKS
 trust-store-password: password

 # If Logstash requires client authentication
 key-store: safkeyring://STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password
 key-alias: Cert.OMDP

Example: Secure connection over TLS with client authentication, using PCKS12 keystore and JKS
truststore

In this example, OMEGAMON Data Connect might be running on or off z/OS.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 tcp:
 enabled: true
 sinks:
 logstash:
 hostname: elastic.example.com
 port: 5046
 ssl:
 enabled-protocols: TLSv1.2
 protocol: TLS
 # Server certificates
 trust-store: /u/my/security/certs/omdp-connect-sinks.jks
 trust-store-type: JKS
 trust-store-password: Pa$$w0rdTS
 # Client certificate
 key-store: /u/my/security/certs/omdp-connect.p12
 key-store-type: PKCS12
 key-store-password: Pa$$w0rdKS

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, Kafka, and STDOUT.
Characteristics of JSON output from OMEGAMON Data Connect

66 IBM Z OMEGAMON Data Provider: Installation and User's Guide

If you need to work directly with the JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.

OMEGAMON
Data Connect

Apache Kafka
TLS/TCP

Kafka

Outputs

JSON

TCP
Client Server

Figure 22. OMEGAMON Data Connect configuration: Kafka output

In this context, OMEGAMON Data Connect is a Kafka client.

connect:
 output:
 kafka:
 enabled: boolean
 servers: string
 retry-interval: number # Optional. Default: 30 (seconds)
 max-connection-attempts: number # Optional. Default: unlimited
 topic: topic_name # Optional. Default: per-table topics
 topic-prefix: topic_prefix # Optional. Default: odp
 filter: # Optional output-level filter
 <Filter parameters>
 properties: # Optional
 <SSL parameters>

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional. Default: false.

To enable this function, you must specify enabled: true.

Specifying enabled: false has the same effect as commenting-out the parent key of this enabled
key and all descendants of that parent key.

servers
A string containing one or more host/port pairs to use for establishing the initial connection to the
Kafka cluster. Use a comma to separate host/port pairs:

servers: host:port

or

servers: host1:port1,host2:port2,...

The value of the servers key is a string, not a YAML sequence.

retry-interval
The number of seconds to wait between retrying connection to the Kafka servers. This key is optional.
Default: 30.

Configuration parameters 67

max-connection-attempts
The maximum number of connection attempts. This key is optional. Default: unlimited. If you specify
this key, you must specify an integer value; there is no literal value for "unlimited".

topic
Optional Kafka topic name.

If you omit the topic key, then OMEGAMON Data Connect sends data for each table to a separate
topic.

The per-table topic names have the following pattern:

topic_prefix.product.table_name

where topic_prefix is the value of the topic-prefix key.

Example per-table topic name:

odp.km5.ascpuutil

topic-prefix
Optional prefix for per-table Kafka topic names. Default: odp.

If you specify a topic key, then the topic-prefix key is ignored.

filter
Optional filter to restrict what data to send.

This output-level filter applies only to Kafka output, replacing any global-level filter
(connect.filter).

properties
Kafka client properties, such as SSL parameters. For information about Kafka client properties, see
the Apache Kafka documentation.

SSL parameters
Only some Kafka client SSL parameters and allowed values are shown here.

Tip: If a property name contains periods, enclose the name in single or double quotes.

connect.output.kafka.properties:

"security.protocol": SSL

Server certificates
"ssl.truststore.location": file_path
"ssl.truststore.password": string
"ssl.truststore.type": JKS|PKCS12

Client certificate
(only required if the Kafka server requires client authentication)
"ssl.keystore.location": file_path
"ssl.keystore.password": string
"ssl.keystore.type": JKS|PKCS12

For more details on these and other Kafka client SSL parameters, see the Apache Kafka documentation.

Example: Connection without SSL/TLS

The following example sends all attributes to a single Kafka topic, omegamon-json.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0

68 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 port: 15379

 output:
 kafka:
 enabled: true
 servers: kafka.example.com:9095
 retry-interval: 10
 max-connection-attempts: 20
 topic: omegamon-json

Example: Connection with SSL/TLS

The following example sends attributes to Kafka topics named omegamon.product.table_name.

connect:
 input:
 tcp:
 enabled: true
 hostname: 0.0.0.0
 port: 15379

 output:
 kafka:
 enabled: true
 servers: kafka1.example.com:9095,kafka2.example.com:9095
 topic-prefix: omegamon
 properties:
 "security.protocol": SSL
 "ssl.truststore.location": /u/my/security/certs/omdp-kafka-server.p12
 "ssl.truststore.password": Pa$$w0rdTS
 "ssl.truststore.type": PKCS12
 "ssl.keystore.location": /u/my/security/certs/omdp-connect.p12
 "ssl.keystore.password": Pa$$w0rdKS
 "ssl.keystore.type": PKCS12

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, Kafka, and STDOUT.
Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with the JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

Prometheus output parameters
OMEGAMON Data Connect can publish attributes to a Prometheus endpoint. OMEGAMON Data Connect
Prometheus output parameters describe the Prometheus endpoint and which attributes to publish.

OMEGAMON Data Connect runs an HTTP(S) server that serves the Prometheus endpoint URL. In HTTP(S)
terms, OMEGAMON Data Connect is the server and Prometheus is the client.

Configuration parameters 69

OMEGAMON
Data Connect

Prometheus/Grafana
HTTPS

Prometheus

Outputs

HTTP
Server Client

Prometheus endpoint

Figure 23. OMEGAMON Data Connect configuration: Prometheus output from an HTTP(S) perspective

In Prometheus architecture, OMEGAMON Data Provider is a target. A Prometheus server collect metrics
from OMEGAMON Data Provider by scraping metrics from the endpoint served by OMEGAMON Data
Connect.

OMEGAMON
ProviderData

OMEGAMON
Data Connect

Prometheus
target

Prometheus
server Grafana

Prometheus endpoint

Figure 24. OMEGAMON Data Provider is a Prometheus target

OMEGAMON Data Connect publishes metrics in the Prometheus text-based exposition format. Before
specifying Prometheus output parameters for OMEGAMON Data Connect, read the Prometheus
documentation for the Prometheus data model and text-based exposition format.

connect:
 output:
 prometheus:
 enabled: boolean
 mappings:
 products:
 kpp: # Example: km5, for the z/OS monitoring agent
 enabled: boolean
 tables:
 table_name:
 enabled: boolean
 metrics:
 - <Metrics parameters>
 - ... # More metrics
 labels:
 - field_name
 - ... # More labels
 ...: # More table names
 ...: # More product codes

enabled
An enabled key can be specified at several levels in the hierarchy of Prometheus output parameters:

• At the highest level, under the prometheus key, enabled determines whether any metrics are
published to Prometheus.

If you set enabled to false at this level, then no metrics are published to Prometheus, regardless
of parameters at lower levels.

70 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Default: false.
• Under a kpp (product code) key, enabled determines whether metrics for that product are

published.

If you set enabled to false for a product, then no metrics are published for that product,
regardless of parameters at lower levels.

Default: true.
• Under a table_name key, enabled determines whether metrics for that table are published.

Default: true.

Allowed values: true, false.

tables
Specifies the tables (attribute groups), and metrics (attributes) from those tables, that OMEGAMON
Data Connect publishes to the Prometheus endpoint.

If you omit the tables key, then no tables for this product are published.

Each child key of tables is a table_name. Each table_name key specifies a list of attributes to publish
as metrics.

labels
A list of attribute field names in the table to use as metric labels. Typically, labels refer to string
attributes, such as a job, user, or system identifier.

OMEGAMON Data Connect uses labels to map the flat structure of attribute records to the
Prometheus dimensional data model.

Metrics parameters
connect.output.prometheus.mappings.products.kpp.tables.table_name.metrics:

- name: field_name
 help: help_text # Optional
 type: counter|gauge # Optional (default: gauge)

name
Metric name. Must be the field name of an attribute in the table. Typically, metrics refer to numeric
attributes, such as a timer in seconds or a size in bytes.

In the Prometheus output, OMEGAMON Data Connect prefixes this name with the table name,
separated by a underscore.

help
Optional. Metric help text.

type
Optional. Metric type. OMEGAMON Data Connect supports the following Prometheus metric types:

counter
gauge

Default: gauge.

Metrics endpoint URL
The Spring Boot server properties server.address and server.port determine the hostname and
port of the endpoint URL where OMEGAMON Data Connect publishes Prometheus metrics.

The path component of the endpoint URL is metrics.

By default, the endpoint URL uses HTTP, not HTTPS. To use a secure connection (HTTPS), specify
server.ssl properties.

Configuration parameters 71

For example, given the following values:

server:
 address: myserver.example.com
 port: 9090

the endpoint URL is:

http://myserver.example.com:9090/metrics

If you do not specify server.address or server.port, then the default metrics endpoint URL is:

http://localhost:9070/metrics

Metrics expiry
OMEGAMON collects data periodically, according to the historical collection interval that you specify for
each attribute group (table).

OMEGAMON Data Connect publishes metrics based on the latest collected data, refreshing metrics at the
endpoint as new data arrives.

If a time series for a metric has no value in a new interval, then OMEGAMON Data Connect removes the
time series from the endpoint. This is known as metrics expiry.

For example, if a metric is labeled by job name, then OMEGAMON Data Connect publishes metrics for a
job name only while a corresponding job is running; only for the intervals in which incoming attribute data
contains that job name.

Tip: Some monitoring agents collect some attribute groups at fixed intervals. For example, the CICS
monitoring agent collects kcpwss attributes every 5 minutes and wss attributes every 15 minutes.

If you use attribute groups with fixed collection intervals for Prometheus output, then configure the
historical collection interval to match these fixed interval values.

Attributes versus the Prometheus dimensional data model
OMEGAMON attribute records have a flat structure that consists of a timestamp and a set of attribute
key/value pairs.

By contrast, the Prometheus dimensional data model arranges data by metric name and unique
combinations of label values.

OMEGAMON Data Connect maps the flat structure of OMEGAMON attributes to the Prometheus
dimensional data model based on the labels and metrics that you specify in the configuration parameters,
and label values in the incoming attribute data.

Example

Given the following two incoming attribute records (expressed here in JSON format, with line breaks for
readability):

{
 "write_time": "2021-04-07T05:36:08.773Z",
 "table_name": "cicsrov",
 "cics_region_name": "SCICWEB1", "system_id": "SYSV",
 "cpu_utilization": 10, "transaction_rate": 5
}

{
 "write_time": "2021-04-07T05:36:08.773Z",
 "table_name": "cicsrov",
 "cics_region_name": "SCICWEB2", "system_id": "SYSV",

72 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 "cpu_utilization": 20, "transaction_rate": 10
}

and the following OMEGAMON Data Connect configuration:

connect:
 output:
 prometheus:
 enabled: true
 mappings:
 products:
 kc5:
 enabled: true
 tables:
 cicsrov:
 enabled: true
 metrics:
 - name: transaction_rate
 type: gauge
 - name: cpu_utilization
 type: gauge
 labels:
 - cics_region_name
 - system_id

then OMEGAMON Data Connect publishes the following data to the Prometheus endpoint:

cicsrov_cpu_utilization{cics_region_name="SCICWEB1", system_id="SYSV"} 10
cicsrov_cpu_utilization{cics_region_name="SCICWEB2", system_id="SYSV"} 20
cicsrov_transaction_rate{cics_region_name="SCICWEB1", system_id="SYSV"} 5
cicsrov_transaction_rate{cics_region_name="SCICWEB2", system_id="SYSV"} 10

Figure 25. Example Prometheus text-format output

Related reference
Server parameters
OMEGAMON Data Connect uses the Spring Boot Java framework. The server key sets Spring Boot server
parameters (properties).
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.

STDOUT output parameters
OMEGAMON Data Connect STDOUT output parameters specify whether to write attributes in JSON Lines
format to the stdout file.

connect:
 output:
 stdout:
 enabled: boolean
 filter: # Optional output-level filter
 <Filter parameters>

enabled
Whether this function is enabled. Allowed values: true, false. This key is optional. Default: false.

To enable this function, you must specify enabled: true.

Configuration parameters 73

Specifying enabled: false has the same effect as commenting-out the parent key of this enabled
key and all descendants of that parent key.

filter
Optional filter to restrict what data to write.

This output-level filter applies only to STDOUT, replacing any global-level filter (connect.filter).

Example

connect:
 output:
 stdout:
 enabled: true

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, Kafka, and STDOUT.
Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with the JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, Kafka, and STDOUT.

Note: The filters described here do not apply to the Prometheus output.
The Prometheus output has its own parameters with similar behavior,
connect.output.prometheus.mappings.products.kpp.tables.

You can filter attributes by product (agent), by table (attribute group), and individually by field name.

For each table, you can conditionally filter records by specifying an expression. OMEGAMON Data Connect
only sends records for which the expression is true.

You can specify a global-level filter that applies to all JSON-format outputs and an output-level filter for
each output. Output-level filters replace any global-level filter.

To specify a global-level filter, insert a filter key as a child of the connect root key:

connect.filter

To specify an output-level filter, insert a filter key as a child of the key for that output:

connect.output.stdout.filter
connect.output.tcp.sinks.sink_name.filter
connect.output.kafka.filter

If you specify a filter, then only attributes enabled by the filter are sent.

If you do not specify a filter, then all attributes from all tables from all products are sent.

Global-level and output-level filters have the same format:

filter:
 enabled: boolean
 include: file_path # If specified, the products key is ignored
 products:
 kpp: # Product code
 enabled: boolean
 tables: # Optional. Default: send all tables from this product
 table_name:
 enabled: boolean

74 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 condition: # Optional. Default: send all records from this table
 enabled: boolean
 expression: SpEL expression
 fields: # Optional. Default: send all fields from this table
 - field_name
 - ... # More attribute field names
 ...: # More table names
 ...: # More product codes

enabled
An enabled key can be specified at several levels in the filter parameters:

• At the highest level, under the filter key
• Under a kpp product code key
• Under a table_name key
• Under a condition key

Allowed values: true, false. Default at all levels: true.

The enabled key has the same effect at every level: setting enabled: false is equivalent to
omitting, or commenting-out, the parent key and that parent key's descendants.

Key Effect of omitting the key, or setting
the child key value enabled: false

filter No filter is set.

On an output-level filter: causes the
global-level filter, if it is enabled, to
take effect for that output.

filter.products.kpp No data from this product is sent.

filter.products.kpp.tables.table_name No data from this table is sent.

filter.products.kpp.tables.table_name.
condition

No condition is set. All records of this
table are sent.

include
Optional. Uses the filter defined in an external filter include file.

If you specify an include key, then OMEGAMON Data Connect ignores the products key.

A filter include file is a YAML document that has the same format as the filter key in an
OMEGAMON Data Connect configuration file, but without the root filter key.

Example filter include file:

enabled: true
products:
 km5:
 tables:
 ascpuutil: # Send all fields
 enabled: true

OMEGAMON Data Connect searches for the filter include file_path first in the file system, and then in
the Java class path.

The file_path can be either absolute or relative. When searching the file system, OMEGAMON Data
Connect treats a relative file path as being relative to the working directory.

You cannot nest filter includes; you cannot specify an include key in a filter include file.

Configuration parameters 75

The OMEGAMON Data Connect JAR file contains an embedded filter include file for Instana. To use
the embedded filter for Instana, specify the following file path:

filter:
 enabled: true
 include: filters/instana.yaml

To use the file that is embedded in the JAR file, ensure that you do not have a filters/
instana.yaml file in the working directory of your file system. Otherwise, OMEGAMON Data Connect
will use the file from your file system instead of the embedded file.

products
Only fields from the specified products (monitoring agents) are sent.

Strictly speaking, the products key is optional. Omitting the products key specifies an "empty"
filter with no criteria, which has the same effect as no filter.

If you specify an include key, then the products key is ignored.

kpp
The 3-character kpp product code of the monitoring agent that owns the table.

You must specify at least one child key under the kpp key.

To send all tables from the product, omit the child tables key and explicitly specify enabled:
true.

tables
Optional. Only fields from the specified tables are sent.

You must specify at least one child table_name key under the tables key.

If all table_name keys under a tables key are set to enabled: false, then no data from the
product is sent.

table_name
The name of a table owned by the product.

You must specify at least one child key under the table_name key.

To send all fields from the table, omit the fields key and explicitly specify enabled: true.

condition
Optional. OMEGAMON Data Connect only sends records for which the condition expression is true. If
the expression is false, OMEGAMON Data Connect discards the record.

The expression child key specifies an expression in the Spring Expression Language (SpEL). The
expression can test field values in the table. For example:

condition:
 expression: cpu_time > 2

To test field values, you can either use relational operators or methods:

Expression using a relational operator Equivalent expression using a method

syncpoint_elapsed_time == 0 syncpoint_elapsed_time.equals(0)

cpu_time > 2 cpu_time.compareTo(2) > 0

cpu_time < 2 cpu_time.compareTo(2) < 0

(cics_region_name == 'CICSPRD' or
cics_region_name == 'TSTRGN1') and
syncpoint_elapsed_time == 0

cics_region_name.equals('CICSPRD')
or
cics_region_name.equals('TSTRGN1')
and syncpoint_elapsed_time.equals(0)

76 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Expression using a relational operator Equivalent expression using a method

Tip: The matches method offers a shorthand
for testing alternative values, but uses
regular expressions, which are typically more
computationally expensive:

cics_region_name.matches('CICSPRD|
TSTRGN1') and
syncpoint_elapsed_time.equals(0)

(transaction_id != null) and
(transaction_id matches 'PFX.*')

transaction_id?.matches('PFX.*')

(total_other_wait_times != null) and
(total_other_wait_times != 0)

total_other_wait_times?.compareTo(0)
> 0

The methods that you can use with a field depend on the Java class to which OMEGAMON
Data Connect maps the field: String, Double, Integer, Long, or, for timestamp fields such as
write_time, OffsetDateTime. All of these classes support the equals and compareTo methods.
The String class also supports the matches method, for testing a field value against a regular
expression. For details on these and other methods, see the Java documentation for each class.

Attention: Expressions can cause runtime errors or undesirable behavior. Test expressions
thoroughly with your data before deploying them in a production environment.

An expression can cause a runtime error for several reasons:

Syntax error
If the expression syntax is invalid, then the Spring framework reports APPLICATION FAILED TO
START, followed by the error details, and OMEGAMON Data Connect does not start.

Error in expression
OMEGAMON Data Connect checks the expression for structural errors that did not trigger a syntax
error.

For example:

• Misspelled field names.
• Attempting to set the value of a read-only field. Typical cause: mistakenly using a single equal

sign (=) to compare for equality instead of the correct two consecutive equal signs (==) .

If the expression fails this check, then OMEGAMON Data Connect performs the following actions:

1. Reports error message KAYC0048E, followed by the error details.
2. Reports informational message KAYC0056I.
3. Discards the record currently being processed.
4. Disables the table in outputs that use this expression.

If this expression is in the global-level filter, then OMEGAMON Data Connect disables the table
in all outputs that use the global-level filter. Outputs that specify their own (output-level) filter
are unaffected.

If the expression is in an output-level filter, then OMEGAMON Data Connect disables the table
in that output only. All other outputs are unaffected.

Error caused by value in expression
Some errors occur only when a field in the expression has a particular value. For example, if the
expression uses an integer field as the denominator in a division operation, then a divide-by-zero
error occurs only if the value of that field is zero. For nonzero denominators, the division operation
succeeds and the expression resolves to true or false.

OMEGAMON Data Connect reports these errors in message KAYC0031W.

Configuration parameters 77

Except for that message, OMEGAMON Data Connect behaves as if the expression returned a
false value: it discards the record, and continues to process subsequent records that use this
expression.

Tip:

• If an expression refers to a field that might not be in every record, then, to avoid throwing a null
pointer exception at runtime, either explicitly test the field for a null value (field_name !=
null) or use the safe navigation operator when accessing a method or property of the field. The
safe navigation operator is a question mark (?) immediately after the field name.

• Division by integer zero causes an error. However, division by floating-point zero does not cause
an error. For details, see the Java documentation for division by zero.

For more information about SpEL, such as comprehensive details of the operators that you can use in
an expression, see the Spring documentation.

To break long expressions over multiple lines in the configuration file, use one of the YAML folding
styles. For example, line folding (>-):

condition:
 expression: >-
 cics_region_name.matches('CCVQ.*') and
 (total_io_wait_times +
 total_other_wait_times == 0)

fields
Optional. A list of attribute field names to send from this table.

OMEGAMON Data Connect always sends the common fields write_time and table_name; do not
specify these in the list of field names. However, other common fields, such as interval_seconds,
are sent only if you specify them in this list.

Example: Global-level filter to send all data from one product only

The following filter sends all data from the z/OS monitoring agent.

connect:
 filter:
 products:
 km5: # z/OS
 enabled: true

Example: No filter: send all data from all products

The following filter is the same as the previous example except for enabled: false directly under the
filter key, disabling the entire filter.

connect:
 filter:
 enabled: false # Disables the entire filter
 products:
 km5:
 enabled: true

Example: Global-level filter to send all data from some products only

The following filter sends all data from the z/OS, CICS, and CICS TG monitoring agents, but blocks all
data from other agents. For instance, if OMEGAMON Data Connect receives data from the Db2 monitoring

78 IBM Z OMEGAMON Data Provider: Installation and User's Guide

agent, then OMEGAMON Data Connect does not send the data from that agent, because the filter does not
enable the corresponding kd5 product code.

connect:
 filter:
 enabled: true
 products:
 km5:
 enabled: true
 kc5: # CICS
 enabled: true
 kgw: # CICS TG
 enabled: true

The following filter is equivalent to the previous filter. The resulting behavior is identical. The only
difference is that the following filter contains an entry for the Db2 monitoring agent marked enabled:
false (effectively, a comment).

connect:
 filter:
 enabled: true
 products:
 km5:
 enabled: true
 kc5:
 enabled: true
 kgw:
 enabled: true
 kd5: # Db2: do not send
 enabled: false

Example: Global-level and output-level filters to send data from different products to different
outputs

In the following example:

• The global-level filter sends data from the z/OS monitoring agent only.
• The Kafka output and the logstash1 TCP output have no output-level filters, so they use the global-

level filter.
• Two of the TCP outputs have output-level filters: the logstash2 output sends data from the Db2 and

IMS monitoring agents only, and the splunk output sends data from the CICS and Java monitoring
agents only.

• Only required enabled keys are shown; in this example, all of the omitted enabled keys default to
true.

connect:
 filter: # Global-level
 products:
 km5:
 enabled: true
 output:
 kafka: # Uses global-level filter
 enabled: true
 servers: kafka.example.com:9095
 topic: omegamon-json
 tcp:
 enabled: true
 sinks:
 logstash1: # Uses global-level filter
 hostname: elastic1.example.com
 port: 5046

Configuration parameters 79

 logstash2:
 hostname: elastic2.example.com
 port: 5046
 filter: # Output-level
 products:
 kd5:
 enabled: true
 ki5:
 enabled: true
 splunk:
 hostname: splunk.example.com
 port: 5047
 filter: # Output-level
 products:
 kc5:
 enabled: true
 kjj:
 enabled: true

Example: Filter to send selected fields from one product only

The following global-level filter sends data from the z/OS monitoring agent: all fields from table
ascpuutil, but only the specified fields from table km5wlmclpx.

connect:
 filter:
 enabled: true
 products:
 km5:
 enabled: true
 tables:
 ascpuutil: # Send all fields
 enabled: true
 km5wlmclpx:
 fields: # Send only these fields
 - managed_system
 - class_name
 - class_type
 - transaction_rate
 - transaction_completions
 - transaction_total

In the following example, there is no global-level filter. Only the Kafka output is filtered.

connect:
 output:
 kafka:
 enabled: true
 servers: kafka.example.com:9095
 topic: omegamon-json
 filter: # Output-level: applies to Kafka output only
 enabled: true
 products:
 km5:
 enabled: true
 tables:
 ascpuutil: # Send all fields
 enabled: true
 km5wlmclpx:
 fields: # Send only these fields
 - managed_system
 - class_name
 - class_type
 - transaction_rate

80 IBM Z OMEGAMON Data Provider: Installation and User's Guide

 - transaction_completions
 - transaction_total
 stdout: # Unfiltered
 enabled: true
 tcp:
 enabled: true
 sinks:
 logstash: # Unfiltered
 hostname: elastic1.example.com
 port: 5046

Example: Global-level filter with condition

The following global-level filter restricts output to records of the z/OS monitoring agent table ascpuutil
that are for sysplex PLEXA.

connect:
 filter:
 enabled: true
 products:
 km5:
 tables:
 ascpuutil: # Send all fields
 condition:
 expression: sysplex_name?.equals('PLEXA')

 output:
 tcp:
 enabled: true
 sinks:
 logstash:
 hostname: elastic1.example.com
 port: 5046

Example: Output-level filters with conditions

The following output-level filters send records of the z/OS monitoring agent table ascpuutil to different
outputs for different sysplexes.

connect:
 output:
 tcp:
 enabled: true
 sinks:
 logstash1: # Sysplex PLEXA output
 hostname: elastic1.example.com
 port: 5046
 filter:
 products:
 km5:
 tables:
 ascpuutil:
 condition:
 expression: sysplex_name?.equals('PLEXA')
 logstash2: # Sysplex PLEXB output
 hostname: elastic2.example.com
 port: 5046
 filter:
 products:
 km5:
 tables:
 ascpuutil:

Configuration parameters 81

 condition:
 expression: sysplex_name?.equals('PLEXB')

Example: Instana filter embedded in OMEGAMON Data Connect

The following TCP output uses the filter include file for Instana that is embedded in the OMEGAMON Data
Connect JAR file.

connect:
 output:
 tcp:
 enabled: true
 sinks:
 instana:
 hostname: instana.example.com
 port: 5046
 filter:
 include: filters/instana.yaml

For details on sending attributes to Instana, see the Instana documentation.

Example: "Empty" output-level filter to send all data from all products

Suppose that you have a global-level filter that restricts output, but you want a particular output to be
unfiltered. You can achieve this by specifying an output-level filter with enabled: true but no criteria;
no products key. The "empty" output-level filter replaces the global-level filter.

In the following example, STDOUT output is unfiltered:

connect:
 filter:
 enabled: true
 products:
 km5:
 ascpuutil: # Send all fields
 enabled: true
 output:
 stdout:
 enabled: true
 filter: # Enabled but empty: does not restrict output
 enabled: true

Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.
Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.
STDOUT output parameters

82 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Connect STDOUT output parameters specify whether to write attributes in JSON Lines
format to the stdout file.

Event publisher parameters
OMEGAMON Data Connect event publisher parameters control aspects of internal OMEGAMON Data
Connect processing.

connect:
 event-publisher:
 queue-capacity: number

queue-capacity
The maximum number of records that OMEGAMON Data Connect stores in its queue.

This value specifies a number of records. The corresponding amount of storage depends on the
details of each record.

Default: 0, meaning unbounded; no maximum limit.

If you set a limit, and the queue exceeds the limit, then OMEGAMON Data Connect throttles incoming
records. OMEGAMON Data Connect blocks (stops accepting) incoming records until the queue no
longer exceeds the limit.

Server parameters
OMEGAMON Data Connect uses the Spring Boot Java framework. The server key sets Spring Boot server
parameters (properties).

In the context of publishing Prometheus or actuator endpoints over HTTPS, OMEGAMON Data Connect is
the server.

To publish Prometheus output and Spring Boot actuator endpoints, OMEGAMON Data Connect uses the
server address, port, and SSL parameters.

Only some Spring Boot server properties are described here. For more details on these and other Spring
Boot server properties, see the Spring Boot documentation.

server:
 address: string
 port: number
 ssl: # Required only for HTTPS, not HTTP
 <SSL parameters>

address
Host name or IP address on which to listen for requests. Default: localhost.

port
Port number on which to listen for requests. Default: 9070.

SSL parameters
SSL parameters are required only if you want to use HTTPS rather than HTTP.

Transport Layer Security (TLS) supersedes the deprecated Secure Sockets Layer (SSL) protocol. However,
for historical reasons, the term SSL is sometimes still used when not referring to a specific protocol.

Only some Spring Boot server SSL properties and allowed values are described here. For example, this
documentation does not describe all types of keystore and truststore. For more details on these and other
Spring Boot server SSL properties and allowed values, see the Spring Boot documentation.

enabled: boolean
ciphers: ciphers_list
client-auth: need|none|want

Configuration parameters 83

enabled-protocols: protocols_list
protocol: protocol
key-alias: string
key-password: string
key-store: string
key-store-password: string
key-store-type: JKS|PKCS12|JCERACFKS
trust-store: string
trust-store-password: string
trust-store-type: JKS|PKCS12|JCERACFKS

enabled
Whether to enable SSL/TLS:
true

Use HTTPS.
false

Use HTTP.

This key is optional. Default: true.

Use enabled: false as a convenient single-line method for falling back to HTTP, as an alternative
to using YAML comment syntax to comment-out all of the SSL parameters.

ciphers
A list of candidate ciphers for the connection, in one of the following formats:

• OpenSSL cipher list
• A comma-separated list of ciphers using the standard OpenSSL cipher names or the standard JSSE

cipher names

This key is optional. Example, in OpenSSL cipher list format:

HIGH:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!MD5:!kRSA

client-auth
Client authentication. Whether to request a client certificate from the client, and then whether to
allow the connection based on the client response.
need

Request a client certificate. Allow the connection only if the client responds with a valid certificate.
none

Do not request a client certificate. Allow the connect without client authentication.
want

Request a client certificate. If the client responds with a certificate, allow the connection only if
the certificate is valid. If the client does not respond with a certificate, allow the connection.

enabled-protocols
List of protocols to enable.

protocol
Protocol to use.

This key is optional. Default: TLS. Recommended: TLSv1.2.

key-alias
Alias of the server private key and associated server certificate in the keystore. On z/OS, the alias is
also known as the certificate label.

This key is optional. Default: the default certificate in the keystore.

key-password
Password required to access the server private key in the keystore.

This key is optional. Default: the value of key-store-password.

84 IBM Z OMEGAMON Data Provider: Installation and User's Guide

key-store
Location of the keystore that contains the server certificate.

The location format depends on the keystore type:

JKS
Keystore file path. Example:

/path/to/keystore.jks

PKCS12
Keystore file path. Example:

/path/to/keystore.p12

JCERACFKS
Only valid if OMEGAMON Data Connect runs on z/OS.

RACF key ring, in the following format:

safkeyring:////owner_user_id/key_ring_name

Note: In this specific context, follow safkeyring: with four (4) consecutive slashes.

where owner_user_id is the RACF user ID that owns the key ring and key_ring_name is the RACF
key ring name.

key-store-password
Password to access the keystore.

If the keystore type is JCERACFKS, then specify the fixed value password. RACF does not use this
value for authentication; this value is required only for compatibility with the JCE requirement for a
password.

key-store-type
Keystore type. Examples:
JKS

Java keystore.
PKCS12

Public-Key Cryptography Standards (PKCS) #12.
JCERACFKS

Java Cryptography Standards (JCE) RACF keystore, or key ring. Only available if OMEGAMON Data
Connect is running on z/OS.

trust-store
Location of the truststore that contains trusted client certificates. See the list of example locations for
key-store.

A truststore is required only for client authentication; that is, when the value of client-auth is need
or want.

trust-store-password
Password to access the truststore.

If the truststore type is JCERACFKS, then specify the fixed value password. RACF does not use this
value for authentication; this value is required only for compatibility with the JCE requirement for a
password.

trust-store-type
Truststore type. See the list of example types for key-store-type.

Configuration parameters 85

Example: HTTPS with client authentication, using the same RACF key ring as both keystore and
truststore

server:
 address: 0.0.0.0
 port: 9080
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Server certificate
 key-store: safkeyring:////STCOMDP/OMDPring
 key-store-type: JCERACFKS
 key-store-password: password # Required fixed value
 key-alias: OMDPcert
 # Trusted client certificates
 trust-store: safkeyring:////STCOMDP/OMDPring
 trust-store-type: JCERACFKS
 trust-store-password: password # Required fixed value

Example: HTTPS with client authentication, using JKS keystore and PKCS12 truststore

server:
 address: 0.0.0.0
 port: 9080
 ssl:
 enabled: true
 enabled-protocols: TLSv1.2
 protocol: TLS
 client-auth: need
 # Server certificate
 key-store: /u/my/security/keystore.jks
 key-store-type: JKS
 key-store-password: pa$$w0rdKS
 key-alias: OMDPcert
 # Trusted client certificates
 trust-store: /u/my/security/truststore.p12
 trust-store-type: PKCS12
 trust-store-password: pa$$w0rdTS

Related reference
Prometheus output parameters
OMEGAMON Data Connect can publish attributes to a Prometheus endpoint. OMEGAMON Data Connect
Prometheus output parameters describe the Prometheus endpoint and which attributes to publish.

Logging parameters
OMEGAMON Data Connect uses the Spring Boot Java framework. The logging key sets Spring Boot
logging properties.

To control the logging level for OMEGAMON Data Connect, set the logging.level.com.rocketsoft
property value.

Allowed values: ERROR, WARN, INFO (default), DEBUG, TRACE.

For details of logging levels and their meanings, see the Spring Boot documentation.

Methods for setting the logging level
Use any of the following methods to set the logging level:

86 IBM Z OMEGAMON Data Provider: Installation and User's Guide

• Set the logging.level.com.rocketsoft property value in the YAML configuration file,
connect.yaml. See the example at the end of this topic.

• If you are using the supplied sample KAYCONN JCL procedure member to run OMEGAMON Data
Connect, either:

– Set the LOGLEVEL symbolic parameter in the procedure JCL:

SET LOGLEVEL='ERROR'

– When starting the JCL procedure, specify the logging level on the MVS START system command. For
example:

S KAYCONN,LOGLEVEL=WARN

• If you are using the supplied sample connect shell script to start OMEGAMON Data Connect, specify
the logging.level.com.rocketsoft property value as a command-line option. For example:

connect --logging.level.com.rocketsoft=TRACE

Example

logging:
 level:
 com:
 rocketsoft: INFO

Configuration parameters 87

88 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Troubleshooting
To diagnose and correct problems that you experience with OMEGAMON Data Provider, first examine the
messages from the related components.

Next, check the common issues described here.

Finally, if you cannot resolve the problem, gather diagnostic information before contacting IBM Software
Support.

Tip:

• To get more detailed messages, you can adjust the logging level of some components. For example, you
can set the logging levels of OMEGAMON Data Broker and OMEGAMON Data Connect.

• If possible, before introducing SSL/TLS (security protocols), test that your configuration works without
SSL/TLS. For example, in a sandbox environment that is entirely inside a secure intranet.

• Check that you are using the correct character encoding for each configuration member. For details, see
“Overview of configurable parts” on page 17.

• As a rudimentary test that OMEGAMON Data Connect is receiving the expected data from OMEGAMON
Data Broker, temporarily enable the STDOUT output of OMEGAMON Data Connect.

Related reference
Messages
Each component of OMEGAMON Data Provider writes messages that describe activity or errors.
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If attributes are not arriving at a destination analytics platform, but there are no obvious
errors, then use these messages as a checklist to diagnose the problem.

Gathering diagnostic information
Before you report a problem with OMEGAMON Data Provider to IBM Software Support, you need to gather
the appropriate diagnostic information.

The following procedure lists the information that you need to gather and then send to IBM Software
Support to help diagnose a problem.

1. Write a clear description of the problem and the steps to reproduce the problem.
2. Gather the configuration parameters for each component of OMEGAMON Data Provider,
RKANPARU(KAYOPEN)

Collection configuration
PARMLIB(ZWESISxx)

Zowe cross-memory server configuration, containing OMEGAMON Data Broker configuration
parameters

config/connect.yaml
OMEGAMON Data Connect configuration

3. Gather the complete job log and any dumps from each of the z/OS address spaces involved.

• The address spaces where the OMEGAMON collection tasks are running. For example, for the z/OS
monitoring agent: the z/OS monitoring server address space.

• The Zowe cross-memory server that is running OMEGAMON Data Broker.
• OMEGAMON Data Connect, if you are running it on z/OS.

Store each job log and dump in a separate text file with a semantic (meaningful, plain English) name
that identifies its contents (for example, include in the file names the terms "collection", "broker",
"connect").

© Copyright IBM Corp. 2021, 2022 89

Tip: In z/OS SDSF, to save the complete job log to a data set, enter the action XD next to the job.
4. If you are running OMEGAMON Data Connect on a distributed platform (off z/OS), gather the Java log,

including the stdout and stderr file contents.
5. Specify the operating systems and versions involved.

• z/OS version
• If you are running OMEGAMON Data Connect off z/OS, the corresponding details for that platform,

such as the operating system distribution name and version.
6. Specify the Java version that you are using to run OMEGAMON Data Connect.

Tip: To get the Java version, use the command java -version.
7. Specify details of the analytics platform or application to which you are sending data.

Examples:

• The name and version of the analytics platform.
• The operating system distribution name and version.
• How you have configured the analytics platform to ingest data from OMEGAMON Data Connect.

For example, for the Elastic Stack: the Logstash configuration and index template; for Splunk, the
configuration stanzas.

• Whether, and how, you have tested that the destination is correctly configured to ingest data,
independent from OMEGAMON Data Provider. For example, have you used a stand-alone TCP
forwarder to send a sample line of JSON to the destination, in the same format sent by OMEGAMON
Data Connect?

Common issues
Before contacting IBM Software Support, check for these common issues.

OMEGAMON Data Connect fails with charset.MalformedInputException

Symptoms
The OMEGAMON Data Connect log contains the following message:

hh:mm:ss.SSS [main] ERROR org.springframework.boot.SpringApplication -
Application run failed
org.yaml.snakeyaml.error.YAMLException:
java.nio.charset.MalformedInputException: Input length = 1

Causes
The OMEGAMON Data Connect configuration file config/connect.yaml is incorrectly encoded. The file
must be encoded in UTF-8.

Example incorrect encodings:

• EBCDIC
• ISO8559-1, where the file includes byte values that are valid in ISO8559-1 but invalid in UTF-8

Resolving the problem
Ensure that the file is valid UTF-8.

For compatibility with common z/OS UNIX tools and applications, the sample connect.yaml is supplied
on z/OS UNIX tagged as being encoded in ISO8559-1 (CCSID 819).

The supplied sample file only uses ASCII characters. ASCII characters have 7-bit byte values; byte values
under 128. In this case, there is no difference between ISO8859-1 and UTF-8, because both encodings

90 IBM Z OMEGAMON Data Provider: Installation and User's Guide

are supersets of ASCII. However, outside of the common subset of ASCII characters, byte values that are
valid in ISO8859-1 can be invalid in UTF-8.

If you use an editor that interprets and writes the file using ISO8859-1, only use ASCII characters.
Otherwise, you could insert byte values that are invalid in UTF-8.

For example, in ISO8859-1, the byte value X'A9' represents the copyright symbol (©). However, in UTF-8,
X'A9' is valid only as a continuation byte in a multi-byte sequence. If you insert a copyright symbol in an
editor that uses ISO8859-1, then the file will be invalid UTF-8. Instead, to insert a copyright symbol, your
editor must use UTF-8, which will insert the correct 2-byte sequence X'C2A9'.

No KPQH037I or KPQH038I message for a table

Symptoms
The address space where a collection task is running (typically, the monitoring agent address space) is
missing an expected KPQH037I or KPQH038I message, or both, for a table (attribute group).

Causes
The historical data collection for this table might not be correctly configured in OMEGAMON.

The table might not be correctly specified in the OMEGAMON Data Provider collection configuration
member, RKANPARU(KAYOPEN).

The monitoring agent might require additional configuration to collect this table.

Resolving the problem
1. Check that the historical data collection for this table has been created and activated (distributed).
2. Check that there is a corresponding entry in RKANPARU(KAYOPEN) for this table. Check that the entry

selects the collection interval specified for the collection.
3. Check whether the monitoring agent requires additional configuration to collect this table. For details,

see the monitoring agent documentation.

Some examples (not comprehensive):

IBM Z OMEGAMON for CICS
To collect bottleneck analysis data, you need to start internal bottleneck collection. Either set the
configuration parameter BOTTLENECK_ANALYSIS to AUTO or use a command or user interface to
manually activate collection.

IBM OMEGAMON for Messaging on z/OS
For some tables, you need to set the configuration parameter KMQ_HISTCOLL_DATA_FLAG to YES.

IBM Z OMEGAMON Network Monitor
To collect z/OS Encryption Readiness Technology (zERT) data, you need to set the configuration
parameter KN3_TCP_ZERT to Y.

4. If the issue is not resolved, contact IBM Software Support.

Related tasks
Starting OMEGAMON Data Provider
Starting OMEGAMON Data Provider involves starting the related components: OMEGAMON Data Connect,
OMEGAMON Data Broker, and the OMEGAMON runtime environment that collects attributes.
Adding more collections to OMEGAMON Data Provider
If you have already configured an OMEGAMON runtime environment to send collections to OMEGAMON
Data Provider, then follow the steps here to add more.
Related reference
OMEGAMON Data Provider collection configuration parameters

Troubleshooting 91

Collection tasks use OMEGAMON Data Provider collection configuration parameters to select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If attributes are not arriving at a destination analytics platform, but there are no obvious
errors, then use these messages as a checklist to diagnose the problem.
Related information
KPQH037I
TABLE table HAS BEEN CONNECTED TO PDS
KPQH038I
TABLE table HAS BEEN CONNECTED TO BROKER

92 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Messages
Each component of OMEGAMON Data Provider writes messages that describe activity or errors.

Message location and prefix by component

Component Message location Message prefix

Collection tasks RKLVLOG output data set of the corresponding job.

For example, for attributes from IBM Z
OMEGAMON Monitor for z/OS: the monitoring
server job (default job name: OMEGDS).

KAYL, KPQD,
KPQH

OMEGAMON Data Broker SYSPRINT output data set of the Zowe cross-
memory server job that runs OMEGAMON Data
Broker or, for some messages, the z/OS system log.

The Zowe cross-memory server also writes its own
messages, with the prefix ZWE. For descriptions of
ZWE messages, see the Zowe documentation.

KAYB

OMEGAMON Data Connect STDOUT file.

If you are running OMEGAMON Data Connect as a
z/OS job: the STDOUT output data set of that job.

KAYC

Message format
Each OMEGAMON Data Provider message begins with an identifier in the following format:

KAYxnnnns

or

KPQxnnns

where:

KAYx
Identifies the origin of the message as one of the following components:
KAYL

OMEGAMON historical collection task. See also KPQx.
KAYB

OMEGAMON Data Broker.
KAYC

OMEGAMON Data Connect.
KPQx

Identifies the origin of the message as a historical collection task (x: D or H).
nnnn or nnn

4-digit or 3-digit message identification number.
s

Severity of the message:
I

Informational.

© Copyright IBM Corp. 2021, 2022 93

W
Warning to alert you to a possible error condition.

E
Error.

The documentation for each message includes the following information:

Explanation
Describes what the message text means, why the message occurred, and what its variables represent.

System action
Describes what the system will do in response to the event that triggered this message.

User response
Describes whether a response is necessary, what the appropriate response is, and how the response
will affect the system or program.

Related concepts
Troubleshooting
To diagnose and correct problems that you experience with OMEGAMON Data Provider, first examine the
messages from the related components.

Expected messages
These are the normal messages that you should expect from each component involved in OMEGAMON
Data Provider. If attributes are not arriving at a destination analytics platform, but there are no obvious
errors, then use these messages as a checklist to diagnose the problem.

A missing expected message indicates a problem. However, the cause of the problem is not necessarily at
the point in processing where the message should occur. The cause might be upstream.

Components and their messages are presented here according to the direction of flow of attributes:
from collection tasks, to OMEGAMON Data Broker, and then to OMEGAMON Data Connect. The actual
chronological order of some messages can differ from the order presented here.

Tip: Solving a problem upstream can solve multiple problems downstream. Investigate missing messages
in the order presented here.

Messages from OMEGAMON Data Provider might be interleaved with messages from other sources, such
as the operating system, a related component, or a supporting software framework. For example:

• The STDOUT file for OMEGAMON Data Connect includes messages from the Spring framework.
• The SYSPRINT output data set of the Zowe cross-memory server includes ZWE-prefix messages from

the server that are not specific to the OMEGAMON Data Broker plugin.

Collection tasks
The RKLVLOG output data set of each monitoring agent job (for example, job names OM*) should contain
the following messages.

Message Description

KAYL0005I KPQHSTxx: BROKER NAME =
'value'

Echoes the value of the broker.name key in the
RKANPARU(KAYOPEN) configuration member.

If this message is missing, check that your
OMNIMON Base component meets the required
APAR level for OMEGAMON Data Provider. For
details, see “Prerequisites for OMEGAMON Data
Provider” on page 12.

94 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Message Description

KAYL0005I KPQHSTxx: PCODE='product',
TABLE='table_name', INTERVAL=interval,
DEST={destinations}

…

Echoes each entry under the collections key in
RKANPARU(KAYOPEN).

If this message is missing for a table, check that
there is a corresponding entry for the table under
the collections key.

KPQH037I KPQHSMGR: TABLE
product.table_name HAS BEEN CONNECTED
TO PDS

…

Reports the first instance of a record for each table
written to the PDS.

This message is written only for tables that are
explicitly specified under the collections key. If
RKANPARU(KAYOPEN) does not explicitly specify
a table, then the default behavior is to write
records from the table to PDS without reporting
this message.

If this message is missing for a table, see “No
KPQH037I or KPQH038I message for a table” on
page 91.

KPQH038I KPQHSMGR: TABLE
product.table_name HAS BEEN CONNECTED
TO BROKER

…

Reports the first instance of a record for each table
sent to OMEGAMON Data Broker.

If this message is missing for a table, see “No
KPQH037I or KPQH038I message for a table” on
page 91.

OMEGAMON Data Broker
The SYSPRINT output data set of the Zowe cross-memory server job that runs OMEGAMON Data Broker
(for example, job name ZWES*) should contain the following messages.

Message Description

KAYB0005I CIDB starting, version (APAR
apar_number, build_time_stamp)

Reports that OMEGAMON Data Broker is starting.
Also reports the OMEGAMON Data Broker version
and APAR number.

Some messages use the term CIDB. CIDB is an
abbreviation of Common Intercept Data Broker.
CIDB is a synonym for OMEGAMON Data Broker.

KAYB0009I Init step 'CIDB anchor
initialization' done

Normal initialization message.

KAYB0016I No CIDB ID has been provided Normal initialization message.

OMEGAMON Data Provider users do not need to
provide this ID.

KAYB0016I Forwarder subsystem
component is on

Corresponds to the OMEGAMON Data Broker
configuration parameter KAY.CIDB.FWD=ON.

KAYB0009I Init step 'Load CIDB
parameters' done
KAYB0009I Init step 'CIDB global area
initialization' done

Normal initialization messages.

Messages 95

Message Description

KAYB0009I Init step 'CIDB ID
generation' done, ID = 'cidb_id'
KAYB0009I Init step 'CIDB store
manager creation' done
KAYB0020I Store 'store_name' has been
added
KAYB0009I Init step 'User defined
store creation' done
KAYB0009I Init step 'Forwarder
subsystem initialization' done

KAYB0036I Store 'store_name' has
connected to sink host:port

OMEGAMON Data Broker has connected to
OMEGAMON Data Connect.

KAYB0009I Init step 'Forwarder
subsystem startup' done
KAYB0006I CIDB successfully started

Normal initialization messages.

OMEGAMON Data Connect
The STDOUT file of OMEGAMON Data Connect should contain the following messages.

General messages, regardless of which outputs are enabled:

Message Description

KAYC0026I Creating JSON mapping
provider

Normal initialization message.

KAYC0023I Starting TCP input service
listening on hostname:port

OMEGAMON Data Connect has started listening on
hostname:port for TCP input from OMEGAMON
Data Broker.

KAYC0028I Source hostname:port has
connected

The instance of OMEGAMON Data Broker that is
at hostname:port has connected to OMEGAMON
Data Connect.

KAYC0038I Starting console listener OMEGAMON Data Connect has started listening
for console commands. For example, MODIFY
commands.

KAYC0035I Build: build_identifier Reports the OMEGAMON Data Connect build
identifier.

KAYC0008I Creating mapping class for
table table_name

Indicates the first instance of a record received for
this table.

KAYC0033I Table table_name received
from origin_type origin_name

…

Indicates the first instance of a record received for
this table from this origin.

The origin type depends on the table. Examples:
sysplex, CICS region.

KAYC0036I Filter selected table:
table_name, fields: field_list

…

OMEGAMON Data Connect has been configured to
filter records of this table.

If STDOUT output is enabled:

96 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Message Description

KAYC0024I Starting STDOUT output
service

Normal initialization message.

If TCP output is enabled:

Message Description

KAYC0009I Starting TCP output service Normal initialization message.

KAYC0042I Starting TCP output thread
[sink_name] {host: hostname, port:
port}
KAYC0010I Connecting to hostname:port
KAYC0011I Connected to hostname:port
…

Normal initialization messages for each sink.

If Prometheus output is enabled:

Message Description

KAYC0018I Starting metrics service Normal initialization message.

KAYC0037I Registered metric for table:
table_name, field: field_name, type:
metric_type, labels: [label_list]

…

Normal initialization message for each metric.

If Kafka output is enabled:

Message Description

KAYC0025I Starting Kafka output
service

Normal initialization message.

When OMEGAMON Data Connect stops:

Message Description

KAYC0034I Stopping server
KAYC0027I Stopping TCP listener
KAYC0029I Source hostname:port has
disconnected

Normal shutdown messages.

KAYC0032I Stopping TCP output service If TCP output was enabled.

KAYC0043I Stopping TCP output thread
[sink_name] {host: hostname, port:
port}

For each TCP output sink.

Related concepts
Troubleshooting
To diagnose and correct problems that you experience with OMEGAMON Data Provider, first examine the
messages from the related components.
Related information
No KPQH037I or KPQH038I message for a table

Messages 97

KAYL, KPQD, KPQH: Messages from OMEGAMON collection tasks
Messages with the prefix KAYL, KPQD, or KPQH are from the OMEGAMON historical collection tasks that
send attributes to OMEGAMON Data Broker.

The KPQD and KPQH messages documented here are the messages introduced by OMEGAMON Data
Provider. For descriptions of other KPQ-prefix messages, see the OMEGAMON shared documentation.

KAYL0001E task: resource NOT ALLOCATED

Explanation
The OMEGAMON historical collection task could not
allocate the resource due to memory shortage.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

System action:
Processing of historical data and streaming stops for
the application identified by task.

User response:
Contact IBM Software Support. See the diagnostic
information in the ITMS:Engine log, RKLVLOG.

KAYL0002W task: MEMBER member_name
READ ERROR, RC = rc, RSN = rsn

Explanation
The OMEGAMON historical collection task could not
read the configuration member member_name.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

The return code rc and reason code rsn indicate the
cause of the error. These codes are from the z/OS MVS
assembler logical parmlib support service, IEFPRMLB.
For descriptions of IEFPRMLB return codes and reason
codes, see z/OS documentation.

System action:
Processing of historical data and streaming stops for
the application identified by task until the issue has
been resolved.

User response
1. Fix the issues reported in the message.
2. Reload the configuration by entering the following

MVS system command:

MODIFY jobname,KPQ,RELOAD_CONFIG,KAY

3. If you cannot resolve the issue, contact IBM
Software Support.

KAYL0003W task: MEMBER member_name NOT
FOUND, OPEN DATA PROCESSING
IS STOPPED

Explanation
The configuration member member_name is missing.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

The rc and rsn are from the IEFPRMLB service and
indicate the cause of the error.

System action:
Streaming stops for the application identified by task
until the issue has been resolved.

User response
1. Deploy the missing configuration member.
2. Load the configuration by entering the following

MVS system command:

MODIFY jobname,KPQ,RELOAD_CONFIG,KAY

KAYL0004W task: YAML CONFIG ERROR,
details

Explanation
An error occurred while processing the YAML
configuration member.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

The details contain additional information such as the
error type and line number.

The following details:
PARSER FAILED WITH CODE 2 AT LINE 0, COLUMN 0
(invalid trailing UTF-8 octet)

indicate that the character encoding of the member
might be incorrect. For example, this error occurs if
the member contains square brackets ([]) encoded
using EBCDIC code page 037. The member must be
encoded using EBCDIC code page 1047.

System action:
Depending on the error details, either the entire
configuration or parts of the configuration are ignored.

98 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/om-shared?topic=components-kpq-messages

User response
1. Correct the error by editing the YAML configuration

member according to the provided details.
2. Reload the configuration by entering the following

MVS system command:

MODIFY jobname,KPQ,RELOAD_CONFIG,KAY

KAYL0005I task: parameters

Explanation
Information about collection configuration parameters
set by the YAML configuration member.

The task is the name of the collection task to which the
parameter applies.

The parameters report parameters set by the YAML
configuration member.

System action:
The configuration parameters are applied to the
collection task.

User response:
None required.

Related reference
OMEGAMON Data Provider collection
configuration parameters
Collection tasks use OMEGAMON Data Provider
collection configuration parameters to select
collections and set their destinations: the
OMEGAMON persistent data store (PDS),
OMEGAMON Data Broker, both, or none.

KPQD107E KPQDBCMD: KPQ VECTOR NOT
FOUND

Explanation:
While running the KPQ operator command, the KPQ
vector was not found.

System action:
The KPQ command terminates.

User response:
View the related messages in the ITMS:Engine log,
RKLVLOG. Contact IBM Software Support.

KPQD108E KPQDBCMD: MODULE KPQSPCMD
NOT AVAILABLE, RC = rc

Explanation:
While running the KPQ operator command, the
command handler module was not available.

System action:
The KPQ command terminates.

User response:

View the related messages in the ITMS:Engine log,
RKLVLOG. Contact IBM Software Support.

KPQH032W KPQHSMGR: BROKER MODULE
name NOT LOADED, RC = rc, RSN
= rsn

Explanation:
The broker API module name could not be loaded.
The return code (rc) and reason (rsn) values have the
abend and reason codes from the LOAD system call.

System action:
No data is sent to the broker.

User response:
Review the JCL for the job that runs the OMEGAMON
historical collection task. Check that the broker
module is in the STEPLIB data sets specified by the
JCL. If you cannot resolve the issue, contact IBM
Software Support.

KPQH033W KPQSPCMD: COMMAND IGNORED,
reason

Explanation:
A MODIFY command has been entered for the job
that runs the OMEGAMON historical collection task;
for example, the monitoring server job. The MODIFY
command has been ignored. The reason specifies the
cause of the error.

System action:
The command is ignored.

User response:
Enter a correct MODIFY command.

KPQH034I KPQSPCMD: COMMAND
ACCEPTED, details

Explanation:
A MODIFY command has been entered for the job
that runs the OMEGAMON historical collection task;
for example, the monitoring server job. The MODIFY
command has been accepted. The details contain
additional command response information.

System action:
The command is accepted.

User response:
None required.

KPQH037I TABLE table HAS BEEN
CONNECTED TO PDS

Explanation
The OMEGAMON historical collection task has
successfully written a record of this table to the
persistent data store (PDS).

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration

Messages 99

member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

This message is written only in the following
situations:

• For the first instance of a record of this table since
the task's configuration was loaded: either when the
task's job started or when the configuration was
reloaded by a MODIFY command while the job was
running.

• After the issue that caused message KPQH039W has
been fixed.

Tip: The frequency of incoming data is determined by
the collection interval of the collection for this table. A
long collection interval can mean a long delay before
this message occurs.

System action:
None.

User response:
None required.

Related information
No KPQH037I or KPQH038I message for a
table

KPQH038I TABLE table HAS BEEN
CONNECTED TO BROKER

Explanation
The OMEGAMON historical collection task has
successfully sent a record from this table to
OMEGAMON Data Broker.

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

This message is written only in the following
situations:

• For the first instance of a record of this table since
the task's configuration was loaded: either when the
task's job started or when the configuration was
reloaded by a MODIFY command while the job was
running.

• After the issue that caused message KPQH040W has
been fixed.

Tip: The frequency of incoming data is determined by
the collection interval of the collection for this table. A
long collection interval can mean a long delay before
this message occurs.

System action:
None.

User response:
None required.

Related information
No KPQH037I or KPQH038I message for a
table

KPQH039W PDS CONNECTION FOR TABLE
table FAILED, reason

Explanation
The OMEGAMON historical collection task failed to
write records of this table to the persistent data store
(PDS). The reason provides details of the cause.

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

System action:
Until this issue is resolved, no records of this table are
written to the PDS.

User response:
Review the provided details and take appropriate
action. If you cannot resolve the issue, contact IBM
Software Support.

KPQH040W BROKER CONNECTION FOR TABLE
table FAILED, reason

Explanation
The OMEGAMON historical collection task failed to
send records of this table to OMEGAMON Data Broker.
The reason provides details of the cause.

This message is written only if the table is explicitly
specified in the RKANPARU(KAYOPEN) configuration
member. If the member does not exist, or the member
exists but does not explicitly specify the table, then
the default behavior is to write records from the table
to PDS without reporting this message.

System action:
Until this issue is resolved, no records of this table are
sent to OMEGAMON Data Broker.

User response
Review the provided details and take appropriate
action.

reason values and suggested actions:

STORE NOT FOUND
Ensure that the OMEGAMON store is defined in the
OMEGAMON Data Broker configuration member.

100 IBM Z OMEGAMON Data Provider: Installation and User's Guide

BROKER HAS NO CONNECTION TO SINK
Ensure that OMEGAMON Data Broker is connected
to OMEGAMON Data Connect.

BROKER OFFLINE
Ensure that the OMEGAMON Data Broker name is
correct in the collection configuration member.

Ensure that the Zowe cross-memory server that
hosts OMEGAMON Data Broker is running.

RC = rc, RSN = rsn
Contact IBM Software Support.

If you cannot resolve the issue, contact IBM Software
Support.

KPQH041E task: CONFIG NOT
LOADED, HISTORY/OPEN DATA
PROCESSING IS STOPPED

Explanation
There are issues with the OMEGAMON
historical collection task configuration member,
rte_hilev.rte_name.RKANPARU(KAYOPEN), for
the application identified by task.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

System action:
Until the issue is resolved, processing of records from
the application (pp) stops. No records of tables from
this application are sent to OMEGAMON Data Broker or
written to PDS.

User response:
Review the issues reported in previous error
messages. If you cannot resolve these issues, contact
IBM Software Support.

KPQH042W task: CONFIG NOT LOADED,
EXISTING CONFIG WILL BE USED

Explanation
A MODIFY command has been entered for the
job that runs the OMEGAMON historical collection
task, to reload the configuration. However, the new
configuration is ignored. Processing of historical data
and/or streaming continues the same as before the
RELOAD_CONFIG command was issued; the new
parameters are ignored.

The task is the name of the task in which the error
originated, in the format KPQHSTpp, where pp is the
product code.

System action:
The new configuration is ignored. Processing of
historical data and streaming continues the same as
before for the application identified by task until the
issue has been resolved.

User response:
Address the issues reported in previous error
messages. If you cannot resolve this issue, contact
IBM Software Support.

KAYB: Messages from OMEGAMON Data Broker
Messages with the prefix KAYB are from OMEGAMON Data Broker.

Messages with the prefix KAYBN are from network functions of OMEGAMON Data Broker, such as secure
connection (SSL/TLS) functions.

OMEGAMON Data Broker writes messages to the SYSPRINT output data set of the Zowe cross-memory
server job that runs OMEGAMON Data Broker or, for some messages, the z/OS system log.

The Zowe cross-memory server also writes its own messages, with the prefix ZWE. For descriptions of ZWE
messages, see the Zowe documentation.

Some messages use the term CIDB. CIDB is an abbreviation of Common Intercept Data Broker. CIDB is a
synonym for OMEGAMON Data Broker.

KAYB0001I trace_message

Explanation:
OMEGAMON Data Broker trace message.

System action:
None.

User response:
None required.

KAYB0002I trace_message

Explanation:
OMEGAMON Data Broker service trace message.

System action:
None.

User response:
None required.

KAYB0003I trace_dump

Explanation:

Messages 101

OMEGAMON Data Broker trace dump.

System action:
None.

User response:
None required.

KAYB0004I command_response

Explanation:
Response from an operator command to OMEGAMON
Data Broker.

System action:
None.

User response:
None required.

KAYB0005I CIDB starting, version
version (APAR apar_number,
build_time_stamp)

Explanation
OMEGAMON Data Broker initialization has begun.

The message details include the OMEGAMON Data
Broker version and APAR number.

System action:
OMEGAMON Data Broker initialization continues.

User response:
None required.

KAYB0006I CIDB successfully started

Explanation:
OMEGAMON Data Broker has successfully initialized.

System action:
OMEGAMON Data Broker is ready to accept service
calls.

User response:
None required.

KAYB0007I CIDB terminating

Explanation:
OMEGAMON Data Broker termination has begun.

System action:
OMEGAMON Data Broker termination continues.

User response:
None required.

KAYB0008I CIDB successfully terminated

Explanation:
OMEGAMON Data Broker has successfully terminated.

System action:
None. OMEGAMON Data Broker has stopped.

User response:

None required.

KAYB0009I Init step 'description' done

Explanation:
This OMEGAMON Data Broker initialization step has
successfully completed.

System action:
OMEGAMON Data Broker initialization continues.

User response:
None required.

KAYB0010W Init step 'description' failed -

Explanation:
A failure occurred during this OMEGAMON Data Broker
initialization step.

System action:
Depending on the step, some functionality might
be disabled. OMEGAMON Data Broker initialization
continues.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0011E Init step 'description' failed -

Explanation:
A severe failure occurred during this OMEGAMON Data
Broker initialization step.

System action:
OMEGAMON Data Broker initialization stops.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0012I Term step 'description' done

Explanation:
This OMEGAMON Data Broker termination step
successfully completed.

System action:
OMEGAMON Data Broker termination continues.

User response:
None required.

KAYB0013W Term step 'description' failed -

Explanation:
A failure occurred during this OMEGAMON Data Broker
termination step.

System action:
Depending on the step, some functionality might
not be terminated cleanly. OMEGAMON Data Broker
termination continues.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

102 IBM Z OMEGAMON Data Provider: Installation and User's Guide

KAYB0014E Term step 'description' failed -

Explanation:
A severe failure occurred during this OMEGAMON Data
Broker termination step.

System action:
OMEGAMON Data Broker termination stops. Some
components might not be terminated properly.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0015W CIDB modify command error -

Explanation:
An error occurred handling a MODIFY command for
OMEGAMON Data Broker.

System action:
OMEGAMON Data Broker does not perform the action
requested by the MODIFY command.

User response:
Review the details provided and then retry the
command.

KAYB0016I response

Explanation:
This message describes the effect of, or response to,
an OMEGAMON Data Broker configuration parameter.

System action:
OMEGAMON Data Broker continues normal
processing.

User response:
None required.

KAYB0017W CIDB parameter error -

Explanation:
An error occurred handling an OMEGAMON Data
Broker configuration parameter.

System action:
OMEGAMON Data Broker ignores the parameter.

User response:
Review the details and correct the parameter.

KAYB0018E CIDB ID not generated -

Explanation:
An error occurred generating the OMEGAMON Data
Broker ID.

System action:
OMEGAMON Data Broker initialization stops. The
OMEGAMON Data Broker service will not be available.

User response:
Use the KAY.CIDB.ID configuration parameter to
specify an OMEGAMON Data Broker ID, rather than
relying on an automatically generated value.

KAYB0019W Store configuration error -

Explanation:
An error occurred configuring the OMEGAMON Data
Broker store.

System action:
OMEGAMON Data Broker ignores the affected store
parameter.

User response:
Review the details and ensure that the parameters are
correct.

KAYB0020I Store 'store_name' has been added

Explanation:
The OMEGAMON Data Broker store has successfully
initialized.

System action:
OMEGAMON Data Broker initialization continues. The
store will be available when OMEGAMON Data Broker
initialization is complete.

User response:
None required.

KAYB0021W Store 'store_name' has not been
added, RC = return_code

Explanation:
An error occurred initializing this OMEGAMON Data
Broker store.

System action:
OMEGAMON Data Broker initialization continues.
However, this store will not be available.

User response:
return_code 35 indicates a duplicate store name:
correct the store name in the PARMLIB(ZWESIPxx)
configuration member. For other return_code values,
contact IBM Software Support.

KAYB0022E subsystem_name subsystem error
-

Explanation:
An error occurred initializing this OMEGAMON Data
Broker subsystem.

System action:
OMEGAMON Data Broker initialization continues.
However, this subsystem will not be available.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0023W subsystem_name subsystem
configuration error -

Explanation:
An error occurred configuring this OMEGAMON Data
Broker subsystem.

Messages 103

System action:
OMEGAMON Data Broker ignores the affected
parameter.

User response:
Review the details and ensure that the parameters are
correct.

KAYB0036I Store 'store_name' has connected
to sink host:port

Explanation:
OMEGAMON Data Broker has successfully connected
to a sink, such as OMEGAMON Data Connect.

System action:
OMEGAMON Data Broker sends data to the sink.

User response:
None required.

KAYB0037I Store store_name has
disconnected from sink host:port

Explanation:
A sink, such as OMEGAMON Data Connect, has
disconnected from OMEGAMON Data Broker.

System action:
OMEGAMON Data Broker frees resources that were
allocated to that sink.

User response:
None required.

KAYB0038W Store store_name has failed to
connect to sink host:port

Explanation:
OMEGAMON Data Broker has failed to connect to a
sink, such as OMEGAMON Data Connect.

System action:
OMEGAMON Data Broker retries connection. Failed
retries are not reported. Message KAYB0036I
indicates a successful retry.

User response:
Review SYSPRINT for other warning or error messages
that might be related to this warning.

KAYB0039E Config member member_name
error -

Explanation:
OMEGAMON Data Broker encountered an error reading
the configuration member.

System action:
OMEGAMON Data Broker ignores all of the parameters
in the configuration member.

User response:
If you cannot resolve the issue, contact IBM Software
Support.

KAYB0040E CIDB startup failed

Explanation:
OMEGAMON Data Broker failed to initialize.

System action:
OMEGAMON Data Broker stops.

User response:
Review the preceding messages. If you cannot resolve
the issue, contact IBM Software Support.

KAYB0041E CIDB terminated with errors

Explanation:
OMEGAMON Data Broker unsuccessfully terminated.

System action:
OMEGAMON Data Broker stops with errors.

User response:
Review the preceding messages. If you cannot resolve
the issue, contact IBM Software Support.

KAYB0042I Forwarder 'forwarder_name' has
connected to sink

Explanation:
OMEGAMON Data Broker has successfully connected
to a sink.

System action:
OMEGAMON Data Broker sends data to the sink.

User response:
None required.

KAYB0043I Forwarder 'forwarder_name' has
disconnected from sink

Explanation:
OMEGAMON Data Broker has disconnected from a
sink.

System action:
OMEGAMON Data Broker frees the resources allocated
to the sink.

User response:
None required.

KAYB0044W Forwarder 'forwarder_name' has
failed to connect to sink

Explanation:
OMEGAMON Data Broker has failed to connect to a
sink.

System action:
The forwarder retries to connect. Further failed
attempts will not be reported until there has been a
successful connection.

User response:
Ensure that the sink is reachable. Review SYSPRINT
for other warning or error messages that might be
related to this warning.

KAYB0045I modify_command

104 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Explanation:
OMEGAMON Data Broker has received a MODIFY
command. This message echoes the command details.

System action:
The MODIFY command is printed to SYSPRINT and
SYSLOG.

User response:
None required.

KAYB0046W Record queue limit has
been reached for forwarder
'forwarder_name'

Explanation:
A OMEGAMON Data Broker forwarder has reached its
record queue limit. This message is reported only once
per sink connection. When the forwarder reconnects,
this will be re-reported when the limit is reached
again.

System action:
OMEGAMON Data Broker discards some old records to
make room for new records.

User response:
To avoid losing records, increase the value of the
OMEGAMON Data Broker configuration parameter
RECORD_QUEUE_LIMIT.

KAYB0047W Forwarder 'forwarder_name' has
lost n records in total

Explanation:
After reaching the record queue limit, a OMEGAMON
Data Broker forwarder has lost n records since the last
successful connection.

System action
OMEGAMON Data Broker continues discarding old
records to make room for new records.

Approximately every 5 minutes, if the total number of
lost records has increased since the previous instance
of this message, OMEGAMON Data Broker issues a
new message with the updated total.

User response:
To avoid losing records, increase the value of the
OMEGAMON Data Broker configuration parameter
RECORD_QUEUE_LIMIT.

KAYB0052E Timer 'timer_name' failed, RC =
return_code, RSN = reason_code
(description)

Explanation:
OMEGAMON Data Broker encountered an error in a
timer.

System action:
The functionality associated with the timer might not
be available.

User response:
Contact IBM Software Support.

KAYB0053E Lost record check not set up, RC =
return_code, RSN = reason_code

Explanation:
OMEGAMON Data Broker was unable to set up the
mechanism for checking lost records.

System action:
Lost records will not be checked or reported.

User response:
Contact IBM Software Support.

KAYB0054W Lost record check not deleted, RC
= return_code, RSN = reason_code

Explanation:
OMEGAMON Data Broker was unable to remove the
mechanism for checking lost records.

System action:
None.

User response:
Contact IBM Software Support.

KAYBN000E Unknown error: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed. The reason for
the failure is unknown.

The description, function, and return code are from the
point of failure, and can help identify the reason for the
failure.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact IBM Software Support.

KAYBN001E System error: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed while performing
a POSIX system function.

The return code is from that function. The description
matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact IBM Software Support.

Messages 105

KAYBN002E SSL/TLS error: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed while performing
a GSKit SSL/TLS function.

The return code is from that function. The description
matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact IBM Software Support.

KAYBN003E Not permitted: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed for one of the
following reasons:

• The operation is not possible, perhaps due to
temporary conditions. For example, no spare ports
are currently available for network connections.

• The current user does not have permission to
perform the operation.

The return code is from the function that attempted
to perform the operation. The description matches the
return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Use the description, function name, and return code to
diagnose the reason for the failure.

KAYBN004E Connection could not be
established: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data
to OMEGAMON Data Connect, but failed because a
connection was refused or the host was unreachable.

The return code is from the function that attempted to
establish the connection. The description matches the
return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Use the description, function name, and return code to
diagnose the reason for the failure.

KAYBN005E Operation timed out: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because an
operation timed out.

The return code is from the function that attempted
to perform the operation. The description matches the
return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Consider adjusting the values of the OMEGAMON Data
Broker configuration parameters for timeout and retry.
Otherwise, contact your system network support.

Related reference
OMEGAMON Data Broker configuration
parameters
OMEGAMON Data Broker configuration
parameters include the host name and port on
which OMEGAMON Data Connect is listening.

KAYBN006E Connection lost: description:
function: rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because the
connection was closed by the peer or dropped.

The return code is from the function that detected the
lost connection. The description matches the return
code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your system network support.

KAYBN007E Key ring password
error: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because the key
ring password was missing, wrong, or expired.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:

106 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Use the OMEGAMON Data Broker configuration
parameter STASH or PASSWORD to specify the correct
password.

KAYBN008E Error opening key
database: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because an I/O
or formatting error occurred opening the key ring.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your z/OS system security administrator.

KAYBN009E Remote host's certificate could not
be validated: description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data to
OMEGAMON Data Connect, but failed because the
certificate from OMEGAMON Data Connect (the remote
host in this context) could not be validated. Possible
reasons include: the certificate could be self-signed,
revoked, or have an unknown certificate authority (CA).

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your system security administrator.

KAYBN010E Remote host unsupported:
description: function:
rc=decimal_rc(hex_rc)

Explanation
OMEGAMON Data Broker attempted to send data
to OMEGAMON Data Connect, but failed because
OMEGAMON Data Connect (the remote host in this
context) performed an action that is not supported.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Contact your z/OS security administrator with the
details of this message. After resolving the issue,
restart the Zowe cross-memory server that is running
OMEGAMON Data Broker.

KAYBN011E Invalid argument: description:
function: rc=decimal_rc(hex_rc)

Explanation
An OMEGAMON Data Broker configuration parameter
specified an invalid value.

The return code is from the function that detected the
error. The description matches the return code.

System action:
OMEGAMON Data Broker tries to reconnect to the sink.

User response:
Address the error described in the message, and then
restart the Zowe cross-memory server that is running
OMEGAMON Data Broker.

Related reference
OMEGAMON Data Broker configuration
parameters
OMEGAMON Data Broker configuration
parameters include the host name and port on
which OMEGAMON Data Connect is listening.

KAYC: Messages from OMEGAMON Data Connect
Messages with the prefix KAYC are from OMEGAMON Data Connect.

OMEGAMON Data Connect writes messages to the STDOUT file.

KAYC0001I Connecting to hostname:port store
store

Explanation:
OMEGAMON Data Connect is attempting to connect
to the OMEGAMON Data Broker specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:
None required.

KAYC0002I Connected to hostname:port store
store

Explanation:
OMEGAMON Data Connect has successfully connected
to the OMEGAMON Data Broker store specified by a
connect.input.cidb configuration parameter.

Messages 107

System action:
None.

User response:
None required.

KAYC0003W Connection to hostname:port lost.
Reconnecting in retryInterval
seconds

Explanation:
OMEGAMON Data Connect has lost its connection
to a OMEGAMON Data Broker specified by a
connect.input.cidb configuration parameter.

System action:
OMEGAMON Data Connect waits for the specified
interval, and then attempts to reconnect.

User response:
None required.

KAYC0004I Disconnecting from hostname:port
store store

Explanation:
OMEGAMON Data Connect is about to disconnect from
the OMEGAMON Data Broker store specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:
None required.

KAYC0005I Disconnected from hostname:port
store store

Explanation:
OMEGAMON Data Connect has disconnected from
the OMEGAMON Data Broker store specified by a
connect.input.cidb configuration parameter.

System action:
None.

User response:
None required.

KAYC0006E An error occurred unsubscribing
from CIDB: details

Explanation:
OMEGAMON Data Connect encountered an error
disconnecting from the OMEGAMON Data Broker
specified by a connect.input.cidb configuration
parameter.

System action:
Depending on the details provided in the
message, OMEGAMON Data Connect might not have
disconnected from OMEGAMON Data Broker.

User response:

Review the details provided in this message. Review
the messages in the output from the corresponding
OMEGAMON Data Broker job.

KAYC0007E An error occurred subscribing to
CIDB: details

Explanation:
OMEGAMON Data Connect encountered an error
connecting to the OMEGAMON Data Broker specified
by a connect.input.cidb configuration parameter.

System action:
OMEGAMON Data Connect does not connect to
OMEGAMON Data Broker.

User response:
Review the details provided in this message. Review
the messages in the output from the corresponding
OMEGAMON Data Broker job.

KAYC0008I Creating mapping class for table
table_name

Explanation
This is the first time, either since starting or since its
configuration was refreshed by a MODIFY command,
that this instance of OMEGAMON Data Connect has
received data for this table. "Mapping class" refers
to code in OMEGAMON Data Connect that transforms
OMEGAMON attributes from their original proprietary
binary format. Compare with KAYC0033I.

Tip: The frequency of incoming data is determined by
the collection interval of the collection for this table. A
long collection interval can mean a long delay before
this message occurs.

System action:
None.

User response:
None required.

KAYC0009I Starting TCP output service

Explanation:
OMEGAMON Data Connect is starting the output
service requested by a connect.output.tcp
configuration parameter.

System action:
None.

User response:
None required.

KAYC0010I Connecting to hostname:port

Explanation:
OMEGAMON Data Connect is attempting to connect
to the TCP output destination specified by a
connect.output.tcp configuration parameter.

System action:

108 IBM Z OMEGAMON Data Provider: Installation and User's Guide

None.

User response:
None required.

KAYC0011I Connected to hostname:port

Explanation:
OMEGAMON Data Connect has successfully connected
to the TCP output destination specified by a
connect.output.tcp configuration parameter.

System action:
None.

User response:
None required.

KAYC0012E Error connecting to hostname:port

Explanation:
OMEGAMON Data Connect could not connect
to the output TCP destination specified by a
connect.output.tcp configuration parameter.

System action:
OMEGAMON Data Connect continues, but does not
send output to that destination.

User response:
Check that the destination hostname:port is listening
for JSON Lines over TCP from OMEGAMON Data
Connect.

KAYC0013E Maximum reconnection attempts
(maxConnectionAttempts) to
host:port reached. TCP output
service is stalled

Explanation:
OMEGAMON Data Connect could not reconnect
to the output TCP destination specified by a
connect.output.tcp configuration parameter.

System action:
OMEGAMON Data Connect continues running, but
does not send output to that destination.

User response
1. Check that the destination host:port is listening

for JSON Lines over TCP from OMEGAMON Data
Connect.

2. Consider changing the value of the OMEGAMON
Data Connect configuration parameter
connect.output.tcp.maxConnectionAttemp
ts.

3. Restart OMEGAMON Data Connect.

KAYC0014E I/O error writing to peer socket:
details. Reconnection will be
attempted in retryInterval seconds

Explanation
OMEGAMON Data Connect could not reconnect
to the output TCP destination specified by a
connect.output.tcp configuration parameter.

details describes the specific I/O error.

System action:
OMEGAMON Data Connect attempts reconnection
after the specified interval.

User response
If OMEGAMON Data Connect cannot reconnect, or this
issue occurs frequently:

1. Check that the destination host:port is listening
for JSON Lines over TCP from OMEGAMON Data
Connect.

2. Consider changing the value of the
OMEGAMON Data Connect configuration parameter
connect.output.tcp.retryInterval.

3. Restart OMEGAMON Data Connect.

KAYC0015E Error creating JSON

Explanation:
OMEGAMON Data Connect encountered an error
creating JSON for output to TCP.

System action:
The attribute is not sent to the TCP output destination.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0016E Error instantiating mapping object

Explanation:
OMEGAMON Data Connect encountered an error
while initializing the mapping code that transforms
OMEGAMON attributes from their original proprietary
binary format.

System action:
OMEGAMON Data Connect continues, but does not
process records for that table.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0018I Starting metrics service

Explanation:
OMEGAMON Data Connect is starting the
Prometheus metrics output service requested
by a connect.output.prometheus configuration
parameter.

System action:

Messages 109

None.

User response:
None required.

KAYC0019W Unhandled metric type:
metric_type

Explanation
An OMEGAMON Data Connect configuration parameter
connect.output.prometheus.tables.table_na
me.metrics.type specified an unhandled
Prometheus metric type:

prometheus:
 enabled: true
 endpoint: metrics
 tables:
 table_name:
 metrics:
 - name: field_name
 help: metric_help
 type: metric_type # 1

 1
The supported values of metric_type are counter
and gauge.

System action:
The metric field_name is not published. Other metrics
are unaffected.

User response:
Specify a supported metric type, and then restart
OMEGAMON Data Connect.

KAYC0020E Error writing 'field_name' metric

Explanation
OMEGAMON Data Connect encountered an error
writing the metric to the Prometheus endpoint.

field_name is the value of a
connect.output.prometheus.tables.table_na
me.metrics.name parameter in the OMEGAMON
Data Connect configuration file.

System action:
The metric field_name is not published.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0021E Reflection error accessing label

Explanation:
There is a problem in the OMEGAMON Data Connect
configuration file with a parameter for a Prometheus
metric.

System action:

Depends on the specific issue described in the details
that follow this message.

User response:
Review the error details following this message.
Examine the corresponding OMEGAMON Data
Connect configuration parameters under the
connect.output.prometheus key. If you cannot
resolve the issue, contact IBM Software Support.

KAYC0022I Starting Kafka input service

Explanation:
OMEGAMON Data Connect is starting the
Apache Kafka input service requested by a
connect.input.kafka configuration parameter.

System action:
None.

User response:
None required.

KAYC0023I Starting TCP input service
listening on hostname:port

Explanation:
OMEGAMON Data Connect is starting the TCP
input service requested by a connect.input.tcp
configuration parameter.

System action:
None.

User response:
None required.

KAYC0024I Starting STDOUT output service

Explanation:
OMEGAMON Data Connect is starting the output
service requested by a connect.output.stdout
configuration parameter.

System action:
None.

User response:
None required.

KAYC0025I Starting Kafka output service

Explanation:
OMEGAMON Data Connect is starting the
Apache Kafka output service requested by a
connect.output.kafka configuration parameter.

System action:
None.

User response:
None required.

KAYC0026I Creating JSON mapping provider

Explanation:

110 IBM Z OMEGAMON Data Provider: Installation and User's Guide

OMEGAMON Data Connect is initializing the code
that maps OMEGAMON attributes from their original
proprietary data format to JSON.

System action:
None.

User response:
None required.

KAYC0027I Stopping TCP listener

Explanation:
OMEGAMON Data Connect is stopping the TCP listener.

System action:
None.

User response:
None required.

KAYC0028I Source hostname:port has
connected

Explanation:
OMEGAMON Data Broker, at the specified hostname
and port, has connected to OMEGAMON Data Connect.

System action:
None.

User response:
None required.

KAYC0029I Source hostname:port has
disconnected

Explanation:
OMEGAMON Data Broker, at the specified hostname
and port, has disconnected from OMEGAMON Data
Connect.

System action:
None.

User response:
None required.

KAYC0030I Restarting server

Explanation
OMEGAMON Data Connect is restarting.

For example, OMEGAMON Data Connect received an
MVS system MODIFY command requesting a restart to
refresh its configuration.

System action:
None.

User response:
None required.

KAYC0031W Event publication error: details

Explanation:

OMEGAMON Data Connect encountered an error
publishing an event.

System action:
Depends on the details following the message.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0032I Stopping TCP output service

Explanation:
OMEGAMON Data Connect is stopping its TCP output
service.

System action:
None.

User response:
None required.

KAYC0033I Table table_name received from
origin_type origin_name

Explanation
This is the first time, either since starting or since its
configuration was refreshed by a MODIFY command,
that this instance of OMEGAMON Data Connect has
received data for this table from this origin_name.

origin_type and origin_name depend on the table.
Examples:

origin_type origin_name

Sysplex The name of the sysplex

CICS Region The name of the CICS region

Compare with KAYC0008I.

System action:
None.

User response:
None required.

KAYC0034I Stopping server

Explanation:
OMEGAMON Data Connect is stopping.

System action:
None.

User response:
None required.

KAYC0035I Build: build_identifier

Explanation:
Identifies the OMEGAMON Data Connect build. This
identifier is for use by IBM Software Support.

Messages 111

System action:
None.

User response:
None required.

KAYC0036I Filter selected table: table_name,
fields: field_list

Explanation
The OMEGAMON Data Connect filter for JSON-format
outputs has been configured to select only the
specified fields from this table for processing.

The value of field_list depends on the table filter:

• If the filter specifies a list of fields, then field_list is
a comma-separated list of field names enclosed in
square brackets:

[field_name, field_name, ...]

• If the filter does not specify a list of fields, then all
fields in the table are selected, and field_list has the
value ALL

System action:
None.

User response:
None required.

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send
to the JSON-format outputs of OMEGAMON
Data Connect: TCP, Kafka, and STDOUT.

KAYC0037I Registered metric for table:
table_name, field: field_name,
type: metric_type, labels: label_list

Explanation:
OMEGAMON Data Connect has been configured to
output a Prometheus metric with these details.

System action:
None.

User response:
None required.

Related reference
Prometheus output parameters
OMEGAMON Data Connect can publish
attributes to a Prometheus endpoint.
OMEGAMON Data Connect Prometheus output
parameters describe the Prometheus endpoint
and which attributes to publish.

KAYC0038I Starting console listener

Explanation
OMEGAMON Data Connect is listening for commands
from the console.

For example, if OMEGAMON Data Connect is running
on z/OS, OMEGAMON Data Connect is listening for
MVS system MODIFY commands.

System action:
None.

User response:
None required.

KAYC0039W Invalid modify command:
command

Explanation
OMEGAMON Data Connect received an invalid
command from the console.

For example, if OMEGAMON Data Connect is running
on z/OS, OMEGAMON Data Connect received an invalid
MVS system MODIFY command.

System action:
The command is ignored.

User response:
Enter a valid console command; on z/OS, a valid MVS
system MODIFY command.

KAYC0040E Error creating socket.

Explanation:
OMEGAMON Data Connect encountered an error
creating a socket network connection for TCP output.

System action:
OMEGAMON Data Connect does not send data to the
TCP output destination.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

KAYC0041E Error creating SSL context.

Explanation:
OMEGAMON Data Connect encountered an error
creating a secure (SSL/TLS) socket network
connection for TCP input from OMEGAMON Data
Broker.

System action:
OMEGAMON Data Connect does not receive data from
OMEGAMON Data Broker.

User response:
Review the error details following this message. If
you cannot resolve the issue, contact IBM Software
Support.

112 IBM Z OMEGAMON Data Provider: Installation and User's Guide

KAYC0042I Starting TCP output thread
[sink_name] {host: hostname, port:
port}

Explanation:
OMEGAMON Data Connect is starting a
thread for the TCP output specified in the
configuration parameters by the YAML key
connect.output.tcp.sinks.sink_name.

System action:
None.

User response:
None required.

KAYC0043I Stopping TCP output thread
[sink_name] {host: hostname, port:
port}

Explanation:
OMEGAMON Data Connect is stopping the
thread for the TCP output specified in the
configuration parameters by the YAML key
connect.output.tcp.sinks.sink_name.

System action:
None.

User response:
None required.

KAYC0044I Event publication for table
table_name has been disabled

Explanation:
OMEGAMON Data Connect configuration parameters
have disabled publication of data for this table.

System action:
OMEGAMON Data Connect does not publish data for
this table.

User response:
None required.

KAYC0045E Field 'field_name' does not exist
in table 'table_name', product
'product_code'

Explanation:
The OMEGAMON Data Connect configuration
parameters refer to a field that does not exist in the
specified table.

System action:
OMEGAMON Data Connect stops.

User response
1. Check that the field exists and that you have

spelled the field name correctly, in the correct case.
2. Edit the configuration parameters, and then restart

OMEGAMON Data Connect.

3. If you cannot resolve the issue, contact IBM
Software Support.

Related reference
Attribute dictionary
OMEGAMON Data Connect includes an attribute
dictionary in a set of YAML files.

KAYC0046E Table 'table_name' does not exist
in product 'product_code'

Explanation:
The OMEGAMON Data Connect configuration
parameters refer to a table that does not exist in the
specified product.

System action:
OMEGAMON Data Connect stops.

User response:
Edit the configuration parameters, and then restart
OMEGAMON Data Connect. If you cannot resolve the
issue, contact IBM Software Support.

KAYC0048E Error checking condition

Explanation
The OMEGAMON Data Connect configuration
parameters specify a filter condition. The condition
expression contains a structural error that did not
trigger a syntax error.

For example:

• Misspelled field names.
• Attempting to set the value of a read-only field.

Typical cause: mistakenly using a single equal sign
(=) to compare for equality instead of the correct two
consecutive equal signs (==) .

System action
OMEGAMON Data Connect performs the following
actions:

1. Discards the record currently being processed.
2. Disables the table in outputs that use this filter.
3. Reports message KAYC0056I.

User response:
Edit the expression, and then restart OMEGAMON Data
Connect. If you cannot resolve the issue, contact IBM
Software Support.

Related reference
Filters for JSON-format outputs
You can optionally filter which attributes to send
to the JSON-format outputs of OMEGAMON
Data Connect: TCP, Kafka, and STDOUT.

KAYC0049E Error publishing to Kafka

Messages 113

Explanation:
OMEGAMON Data Connect encountered an error
attempting to send attributes to Kafka.

System action
OMEGAMON Data Connect performs the following
actions:

1. Flushes (discards) any unsent data queued for
output to Kafka

2. Stops sending data to Kafka.
3. Attempts to reconnect to Kafka.

If the reconnection attempt succeeds, then
OMEGAMON Data Connect restarts sending data to
Kafka. However, the previously flushed data is lost.

4. If the reconnection attempt fails, then OMEGAMON
Data Connect reports error message KAYC0050E,
and permanently stops sending data to Kafka.

User response
1. Check that you have specified the correct
host:port connection details for the Kafka
servers.

2. Consider the values that you have set for the
Kafka output parameters retry-interval and
max-connection-attempts.

3. Investigate the Kafka log for potential causes of the
error.

KAYC0050E Kafka output service has stopped

Explanation:
This message follows KAYC0049E, which reports an
error sending data to Kafka. This message reports that
OMEGAMON Data Connect was unable to connect to
Kafka after that error.

System action:
OMEGAMON Data Connect permanently stops sending
data to Kafka.

User response:
See the response for KAYC0049E.

KAYC0051E Error connecting to Kafka.
Retrying in retry-interval seconds

Explanation:
OMEGAMON Data Connect attempted but failed to
connect to Kafka.

System action:
OMEGAMON Data Connect will retry connecting to
Kafka after the number of seconds specified by
the Kafka output parameter retry-interval. The
maximum number of attempts is determined by the
parameter max-connection-attempts.

User response:
None required.

KAYC0053E Nested filter includes are not
supported

Explanation:
OMEGAMON Data Connect found an include
parameter in a filter include file.

System action:
OMEGAMON Data Connect stops.

User response:
Remove the include parameter from the filter
include file. Restart OMEGAMON Data Connect.

KAYC0054E Filter include file file_path was not
found

Explanation:
OMEGAMON Data Connect could not find the filter
include file, specified by an include parameter, either
in the file system or in the class path.

System action:
OMEGAMON Data Connect stops.

User response:
Edit the include parameter to point to the correct file
path. Restart OMEGAMON Data Connect.

KAYC0056I table table_name has been
disabled for outputs that use this
filter

Explanation:
This message follows KAYC0048E, which reports an
error in a filter condition expression. As a result of
that error, OMEGAMON Data Connect disables (stops
sending records of) the table in outputs that use this
filter.

System action
OMEGAMON Data Connect continues processing, but
disables the table in outputs that use this filter.

If this expression is in the global-level filter, then
OMEGAMON Data Connect disables the table in all
outputs that use the global-level filter. Outputs that
specify their own (output-level) filter are unaffected.

If the expression is in an output-level filter, then
OMEGAMON Data Connect disables the table in that
output only. All other outputs are unaffected.

User response:
No response required for this message. See the
response for message KAYC0048E.

Related reference
Filters for JSON-format outputs

114 IBM Z OMEGAMON Data Provider: Installation and User's Guide

You can optionally filter which attributes to send
to the JSON-format outputs of OMEGAMON
Data Connect: TCP, Kafka, and STDOUT.

Messages 115

116 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Reference

Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Table 6. Monitoring agents supported by OMEGAMON Data Provider, with links to attributes documentation

Product
code

Monitored
subsystem

Monitoring agent Monitoring
agent:
minimum
version
supported

kc5 CICS IBM Z OMEGAMON for CICS

Previous name, before V5.6:

IBM Z OMEGAMON for CICS on z/OS

5.5

kgw CICS TG IBM Z OMEGAMON for CICS TG

Previous name, before V5.6:

IBM Z OMEGAMON for CICS TG on z/OS

5.5

kd5 Db2 IBM OMEGAMON for Db2 Performance Expert on z/OS

Previous name, before V5.5:

IBM Tivoli OMEGAMON XE for Db2 Performance Expert on z/OS

5.4

ki5 IMS IBM OMEGAMON for IMS on z/OS 5.5

kjj JVM IBM Z OMEGAMON for JVM on z/OS 5.5

kmq MQ IBM OMEGAMON for Messaging on z/OS 7.5

kn3 Network IBM Z OMEGAMON Network Monitor 5.6

ks3 Storage IBM OMEGAMON for Storage on z/OS 5.5

km5 z/OS IBM Z OMEGAMON Monitor for z/OS 5.6

A similar mapping of product codes to monitoring agent product names is available in YAML format in the
attribute dictionary included with OMEGAMON Data Connect.

OMEGAMON Data Provider is designed to be extended to support more agents.

Product code
Each agent has a unique kpp product code. The product code matches the agent configuration parameter
prefix.

You use product codes to configure the behavior of OMEGAMON Data Provider:

• OMEGAMON Data Provider collection: which collections to send to OMEGAMON Data Connect
• OMEGAMON Data Connect filters: which data to send to each output

Output from OMEGAMON Data Provider contains the product code in the product_code common field.

Related reference
OMEGAMON Data Provider collection configuration parameters

© Copyright IBM Corp. 2021, 2022 117

https://www.ibm.com/docs/en/om-cics/5.6.0?topic=guide-attributes
https://www.ibm.com/docs/en/om-cics/5.6.0?topic=octzug-attributes
https://www.ibm.com/docs/en/om-db2-pe/5.5.0?topic=client-omegamon-db2-pe-attributes
https://www.ibm.com/docs/en/om-ims/5.5.0?topic=portal-attributes
https://www.ibm.com/docs/en/om-jvm/5.5.0?topic=reference-attributes
https://www.ibm.com/docs/en/om-msg/7.5.0?topic=reference-attributes
https://www.ibm.com/docs/en/om-nm/5.6.0?topic=reference-attributes
https://www.ibm.com/docs/en/om-stor/5.5?topic=guide-attributes
https://www.ibm.com/docs/en/om-zos/5.6.0?topic=reference-attributes

Collection tasks use OMEGAMON Data Provider collection configuration parameters to select collections
and set their destinations: the OMEGAMON persistent data store (PDS), OMEGAMON Data Broker, both, or
none.
Prometheus output parameters
OMEGAMON Data Connect can publish attributes to a Prometheus endpoint. OMEGAMON Data Connect
Prometheus output parameters describe the Prometheus endpoint and which attributes to publish.
Filters for JSON-format outputs
You can optionally filter which attributes to send to the JSON-format outputs of OMEGAMON Data
Connect: TCP, Kafka, and STDOUT.
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.
Attribute groups versus table names
OMEGAMON Data Provider uses concise table names to refer to attribute groups.

Attribute dictionary
OMEGAMON Data Connect includes an attribute dictionary in a set of YAML files.

The dictionary describes the product codes, table names, and attribute field names that you can
specify in OMEGAMON Data Provider collection configuration parameters and OMEGAMON Data Connect
configuration parameters.

You can use the dictionary files as a human-readable reference or develop programs to parse their
contents.

Location of the dictionary files
The dictionary files are supplied in the dictionary directory under the OMEGAMON Data Connect
installation directory.

Default z/OS UNIX directory path:

/usr/lpp/omdp/kay-110/dictionary

Index of supported monitoring agents
The following file contains an index of the monitoring agents supported by OMEGAMON Data Provider:

dictionary/_index.yaml

This file maps kpp product codes to product names (titles).

Example snippet:

products:
 - code: km5
 title: IBM Z OMEGAMON Monitor for z/OS

Indexes of tables owned by each monitoring agent
The following files contain indexes of tables owned by each monitoring agent:

dictionary/kpp/_index.yaml

These files map the concise table names used by OMEGAMON Data Provider to the attribute group names
presented in OMEGAMON user interfaces and documentation.

118 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Example snippet of km5/_index.yaml:

tables:
 - name: ascpuutil
 title: Address Space CPU Utilization

Note: OMEGAMON Data Provider supports only the attribute groups that can be included in OMEGAMON
historical data collection.

Attributes in each table
The following files describe the attributes in each table:

dictionary/kpp/table_name.yaml

Note: The file for the con table is named cont.yaml, with a t appended to the table name. Windows
reserves con for a device file and does not allow con.yaml as a file name.

These files map the snake_case field names used by OMEGAMON Data Provider to the attribute names
(titles) presented in OMEGAMON user interfaces and documentation. For example, job_name maps to
Job Name.

These files also contain a multi-line, plain-text description of each attribute. These descriptions are
similar to the attribute descriptions in the monitoring agent documentation.

Example snippet of km5/ascpuutil.yaml:

name: ascpuutil
title: Address Space CPU Utilization
fields:
 - name: managed_system
 title: Managed System
 description:
 - A z/OS operating system in your enterprise that is being monitored
 - by an IBM Z OMEGAMON Monitor for z/OS agent. Valid value is a
 - character string with a maximum length of 32 bytes.
 - name: job_name
 title: Job Name
 description:
 - The name of the job, started task, TSO user, APPC address space,
 - and so on, consuming CPU cycles. Valid value is a string, with a
 - maximum of eight characters.

Attribute names versus field names
OMEGAMON attribute names are either not ideal or not usable as field names in some analytics platforms
and data formats. OMEGAMON Data Provider converts OMEGAMON attribute names into "safe" field
names.

In this context, the term field name corresponds to platform- or format-specific terms such as key,
property name, and metric name.

Example OMEGAMON attribute name: "MVS Busy%".

Format of OMEGAMON attribute names Example rules for field names

Several words separated by spaces. No spaces allowed.

Can contain various non-alphanumeric characters,
such as a percent sign (%).

Only a limited subset of non-alphanumeric
characters allowed.

Can begin with a digit. Must begin with a letter.

Reference 119

Format of OMEGAMON attribute names Example rules for field names

Mixed-case. Case-sensitive. Referring to a field name with a
single character in the incorrect case can result in
an error such as "Field not found".

OMEGAMON Data Provider field names
OMEGAMON Data Provider field names have the following format:

• Snake case, containing only lowercase letters (a - z), digits (0 - 9), and underscores (_).
• Begin with a letter.
• End with a letter or a number; no trailing underscores.

Converting attribute names to field names
OMEGAMON Data Provider field names are the OMEGAMON attribute names after applying the following
conversion steps:

1. Lowercase all letters.
2. Replace space, hyphen (-), backslash (\) with underscore (_).
3. Replace slash (/) with underscore (_).

Exception: replace "I/O" with "io", not "i_o".
4. Replace percent sign (%) with the string "pct".

Insert a leading or trailing underscore before or after "pct", to separate it from adjacent text, unless
that underscore already exists.

5. If the first character is a digit (1, 2, 3, …), replace it with the corresponding English word (one, two,
three, …).

6. Convert double underscores (__) to a single underscore (_).

Note:

• For a comprehensive mapping of field names to attribute names, see the attribute dictionary included
with OMEGAMON Data Connect.

• Each OMEGAMON product documents the attributes that it collects. For example, for attributes
collected by IBM Z OMEGAMON Monitor for z/OS, 5.6, see the corresponding Attributes documentation.

• The OMEGAMON enhanced 3270 user interface (e3270UI) menu option Tools > ODI (Object
Definitions) lists attribute tables and their attributes.

Examples

OMEGAMON attribute name OMEGAMON Data Provider field name

Buffer Size buffer_size

SCM Service Time scm_service_time

Amount CSA In Use amount_csa_in_use

Total 4K Reqs Completed/Sec total_4k_reqs_completed_sec

Active I/O Threshold active_io_threshold

MVS Busy% mvs_busy_pct

Physical % zIIP physical_pct_ziip

Dependent Enclave IFA % On CP dependent_enclave_ifa_pct_on_cp

120 IBM Z OMEGAMON Data Provider: Installation and User's Guide

https://www.ibm.com/docs/en/om-zos/5.6.0?topic=reference-attributes

OMEGAMON attribute name OMEGAMON Data Provider field name

CPU % \ MVS Normalized cpu_pct_mvs_normalized

1 Megabyte Writes Demoted one_megabyte_writes_demoted

3rd Device Wait Percentage third_device_wait_percentage

• In JSON output from OMEGAMON Data Provider, the attribute name "Buffer Size" is represented as the
key buffer_size.

• In a Prometheus endpoint published by OMEGAMON Data Provider, the attribute name "MVS Busy%" is
represented as the metric km5thrsuml_mvs_busy_pct, where km5thrsuml is the table name.

Attribute groups versus table names
OMEGAMON Data Provider uses concise table names to refer to attribute groups.

A mapping of table names to attribute groups is available from several sources:

• YAML-format attribute dictionary supplied with OMEGAMON Data Connect.
• OMEGAMON enhanced 3270 user interface (e3270UI) menu option Tools > ODI (Object Definitions).
• Documentation for some monitoring agents. For example:

Monitoring agent Mapping documentation

IBM Z OMEGAMON Monitor for z/OS Historical data table names and corresponding
attribute groups

IBM Z OMEGAMON for CICS OMEGAMON for CICS on z/OS near-term history
tables

IBM Z OMEGAMON for CICS TG OMEGAMON for CICS TG on z/OS near-term
history tables

Examples

OMEGAMON Data Provider uses the table name ascpuutil to refer to the attribute group "Address
Space CPU Utilization".

In the collection configuration member, RKANPARU(KAYOPEN):

 - product: km5
 table: ascpuutil
 interval: 0

In the OMEGAMON Data Connect configuration file, config/connect.yaml:

 filter:
 products:
 km5:
 ascpuutil:
 fields:
 - cpu_percent
 - ... # Other field names

In JSON output from OMEGAMON Data Provider:

"table_name":"ascpuutil"

Reference 121

https://www.ibm.com/docs/en/om-zos/5.6.0?topic=tables-understanding-how-data-store-works
https://www.ibm.com/docs/en/om-zos/5.6.0?topic=tables-understanding-how-data-store-works
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-zos
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-zos
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-tg-zos
https://www.ibm.com/docs/en/om-cics/5.5.0?topic=collection-sample-pds-estimates-omegamon-cics-tg-zos

In a Prometheus metric published by OMEGAMON Data Provider:

ascpuutil_cpu_percent{labels} value

Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.

Common fields
OMEGAMON Data Connect includes the following fields in output for all products, for all attribute tables.
These fields are sometimes referred to as common fields. These fields are included regardless of any
field-level filter.

interval_seconds
The collection interval of the historical collection, in seconds.

product_code
The 3-character kpp product code of the monitoring agent that owns the table.

table_name
The concise table name corresponding to the longer, multi-word attribute group name typically
presented in OMEGAMON product documentation and user interfaces.

write_time
Timestamp when the data was created on z/OS by the OMEGAMON collection task, before it was
forwarded to OMEGAMON Data Broker.

km5: z/OS monitoring agent
OMEGAMON Data Connect introduces the following fields to data from IBM Z OMEGAMON Monitor for
z/OS:

smf_id
The SMF ID of the z/OS LPAR from which these attributes were collected.

The smf_id field is included only for tables that contain LPAR-specific attributes. If the table contains
sysplex-wide attributes, then there is no smf_id field.

If smf_id already exists as an attribute in a table, then OMEGAMON Data Connect does nothing: the
output contains the original field value.

sysplex_name
The z/OS sysplex from which these attributes were collected.

If sysplex_name already exists as an attribute in a table, then OMEGAMON Data Connect does
nothing: the output contains the original field value.

kd5: Db2 monitoring agent
OMEGAMON Data Connect introduces the following fields to data from IBM OMEGAMON for Db2
Performance Expert on z/OS:

db2_subsystem
The Db2 subsystem ID from which these attributes were collected, derived from the originnode
attribute value.

mvs_system
The MVS ID of the z/OS LPAR from which these attributes were collected, derived from the
originnode attribute value.

122 IBM Z OMEGAMON Data Provider: Installation and User's Guide

ks3: Storage monitoring agent
OMEGAMON Data Connect introduces the following field to data from IBM OMEGAMON for Storage on
z/OS:

smf_id
The SMF ID of the z/OS LPAR from which these attributes were collected.

If smf_id already exists as an attribute in a table, then OMEGAMON Data Connect does nothing: the
output contains the original field value.

Related reference
Monitoring agents supported by OMEGAMON Data Provider
OMEGAMON Data Provider processes attributes from several OMEGAMON monitoring agents.

Characteristics of JSON output from OMEGAMON Data Connect
If you need to work directly with the JSON output from OMEGAMON Data Connect, then it's useful to
understand the characteristics of this data, such as its structure, property names, and property values.

Flat: no nested objects
Each line of the JSON Lines output by OMEGAMON Data Connect is a JSON object consisting of a
collection of name/value pairs ("properties").

The structure is flat: there are no nested objects.

No null values
If there is no underlying data available for an OMEGAMON attribute, then rather than representing the
attribute in JSON output as a key with the JavaScript value null, OMEGAMON Data Connect omits the
key.

OMEGAMON Data Connect performs this processing for each line of JSON. Depending on the availability
of the underlying data, a key that is present in some lines of JSON output might not be present in other
lines for the same attribute table.

No whitespace between tokens
The JSON standard (ECMA-404) allows insignificant whitespace before or after any token.

The JSON output by OMEGAMON Data Connect is deliberately compact and omits such whitespace.

Property names
JSON property names are based on OMEGAMON attribute names. For details, see “Attribute names
versus field names” on page 119.

Timestamps
Timestamps are in ISO 8601 date and time of day representation extended format with a trailing zone
designator:

yyyy-mm-ddThh:mm:ss.SSSSSSSSS[+|-]hh:mm

Example:

2021-06-23T00:18:28.999999001-04:00

Reference 123

https://jira.rocketsoftware.com/browse/ECMA-404

Scientific notation
Very large or very small numbers might be represented in scientific notation. For example,
1.077952576E8.

Introduced fields
OMEGAMON Data Connect introduces fields that do not occur in the original OMEGAMON attribute
groups.

Example

Here is a single line of JSON output from OMEGAMON Data Connect, shown here with indenting and line
breaks for readability:

{
 "managed_system":"ZOSAPLEX:ZOS1:MVSSYS",
 "job_name":"M5M5DS",
 "cpu_percent":1.7,
 "tcb_percent":1.7,
 "srb_percent":0.0,
 "step_name":"M5M5DS",
 "proc_step":"TEMSREMT",
 "svcclass":"STCLO",
 "svcclasp":1,
 "asid":417,
 "jesjobid":"S0852831",
 "job_cpu_time":1671.63,
 "job_tcb_time":1655.76,
 "job_srb_time":15.34,
 "sysplex_name":"ZOSAPLEX",
 "smf_id":"ZOS1",
 "table_name":"ascpuutil",
 "write_time":"2021-10-13T08:00:13.999999001-04:00",
 "product_code":"km5",
 "interval_seconds":60
}

This example includes the following fields introduced by OMEGAMON Data Connect:

sysplex_name
smf_id
table_name
write_time
product_code
interval_seconds

Related reference
Fields introduced by OMEGAMON Data Connect
OMEGAMON Data Connect introduces fields that do not correspond to OMEGAMON attributes.
TCP output parameters
OMEGAMON Data Connect TCP output parameters specify one or more destinations ("sinks") for sending
attributes in JSON Lines format over a TCP network.
Kafka output parameters
OMEGAMON Data Connect Kafka output parameters specify whether to publish attributes in JSON format
to an Apache Kafka topic.
STDOUT output parameters
OMEGAMON Data Connect STDOUT output parameters specify whether to write attributes in JSON Lines
format to the stdout file.

124 IBM Z OMEGAMON Data Provider: Installation and User's Guide

Product legal notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2021, 2022 125

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this information and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or
any equivalent agreement between us.

126 IBM Z OMEGAMON Data Provider: Installation and User's Guide

IBM®

	Contents
	Figures
	Tables
	About this document
	What's new
	Introduction
	Architecture
	Topology
	Attribute destinations
	Security
	Starter dashboards
	Prerequisites

	Installing
	Overview of configurable parts
	Getting started
	Configuring which collections to send
	Configuring OMEGAMON Data Broker
	Configuring OMEGAMON Data Connect
	Integrating analytics platforms
	Instana
	Elastic Stack
	Basic configuration

	Splunk
	Basic configuration
	Setting source type per-event based on table name

	Starting OMEGAMON Data Provider

	Modifying running components
	Reloading collection configuration
	Displaying OMEGAMON Data Broker status
	Restarting OMEGAMON Data Connect
	Stopping components on z/OS

	Adding more collections
	Configuration parameters
	Collection
	OMEGAMON Data Broker
	OMEGAMON Data Connect
	TCP input
	TCP output
	Kafka output
	Prometheus output
	STDOUT output
	Filters for JSON-format outputs
	Event publisher
	Server
	Logging

	Troubleshooting
	Gathering diagnostic information
	Common issues
	OMEGAMON Data Connect fails with charset.MalformedInputException
	No KPQH037I or KPQH038I message for a table

	Messages
	Expected messages
	KAYL, KPQD, KPQH: Messages from OMEGAMON collection tasks
	KAYB: Messages from OMEGAMON Data Broker
	KAYC: Messages from OMEGAMON Data Connect

	Reference
	Supported monitoring agents
	Attribute dictionary
	Attribute names versus field names
	Attribute groups versus table names

	Fields introduced by OMEGAMON Data Connect
	JSON output characteristics

	Product legal notices

